Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,488
result(s) for
"Melt spinning"
Sort by:
Melt-Spun Fibers for Textile Applications
2020
Textiles have a very long history, but they are far from becoming outdated. They gain new importance in technical applications, and man-made fibers are at the center of this ongoing innovation. The development of high-tech textiles relies on enhancements of fiber raw materials and processing techniques. Today, melt spinning of polymers is the most commonly used method for manufacturing commercial fibers, due to the simplicity of the production line, high spinning velocities, low production cost and environmental friendliness. Topics covered in this review are established and novel polymers, additives and processes used in melt spinning. In addition, fundamental questions regarding fiber morphologies, structure-property relationships, as well as flow and draw instabilities are addressed. Multicomponent melt-spinning, where several functionalities can be combined in one fiber, is also discussed. Finally, textile applications and melt-spun fiber specialties are presented, which emphasize how ongoing research efforts keep the high value of fibers and textiles alive.
Journal Article
Formation and Investigation of Mechanical, Thermal, Optical and Wetting Properties of Melt-Spun Multifilament Poly(lactic acid) Yarns with Added Rosins
by
Adomavičiūtė, Erika
,
Griškonis, Egidijus
,
Bolskis, Evaldas
in
Biodegradability
,
Degree of crystallinity
,
Draw ratio
2022
One method for adding enhancing properties to textile materials is the insertion of natural ingredients into the textile products during the manufacturing or finishing process. The aim of this research is to investigate the formation of biodegradable melt-spun multifilament Poly(lactic acid) (PLA) yarns with different contents (i.e., 5%, 10%, and 15%) of natural material–rosin, also known as colophony. In this study, multifilament yarns were successfully formed from PLA and a natural substance–pine rosin by melt-spinning them at two different draw ratios (i.e., 1.75 and 2.75). The results indicated that a 1.75 draw ratio caused the formation of PLA and PLA/rosin yarns that were brittle. The presence of rosin (i.e., 5% and 10%) in multifilament yarns decreased the mechanical properties of the PLA/rosin melt-spun multifilament yarns’ tenacity (cN/tex), breaking tenacity (cN/tex), and tensile strain (%) and elongation at break (%) and increased absorbance in the entire UV region spectra. In addition, the melting point and degree of crystallinity decreased and there was an increase in the wetting angle compared with pure PLA multifilament. The investigation of melt-spun yarns with Raman spectroscopy proved the presence of rosin in PLA melt-spun yarns.
Journal Article
Microstructure and Mechanical Properties of Al-Si Alloys Produced by Rapid Solidification and Hot Extrusion
2023
The paper presents the results of tests of rapid solidification (RS) aluminum alloys with the addition of silicon (5%, 11%, and 20%). Casting by melt-spinning on the surface of an intensively cooled copper cylinder allowed to obtain a metallic material in the form of flakes, which were then consolidated in the process of pressing and direct extrusion. The effect of refinement on structural components after rapid solidification was determined. Rapidly solidified AlSi materials are characterized by a comparable size of Si particles, regardless of the silicon content, and the shape of these particles is close to spheroidal. Not only Si particles are fragmented, but also the Al-Si-Fe phase, which also changed its shape from irregular with sharp edges to regular and spherical. The melt-spinning process resulted in a fine-grained structure compared to materials obtained by gravity-casting and extrusion. The influence of the high-temperature compression test on the mechanical properties of rapidly solidified materials was analyzed, and the results were compared with those of gravity-cast materials. An increase in strength properties was found in the case of the AlSi5 RS alloy by 20%, in the case of AlSi11RS by 25%, and in the case of the alloy containing 20% Si by as much as 86% (tensile test). On the basis of the homogeneity of the particle distribution determined by the SEM method, it was found that rapid solidification is an effective method of increasing the strength properties and improving the plastic properties of Al-Si alloys.
Journal Article
Mechanical Response of Zr51.9Cu23.3Ni10.5Al14.3 Metallic Glass Ribbon under Varying Strain Rates
2024
In this work, we investigated the mechanical behavior of a low-cost Zr51.9Cu23.3Ni10.5Al14.3 (at. %) metallic glass ribbon prepared with industrial-grade material through the melt-spinning method. The ribbons have good appearances and almost no defects. The mechanical behavior associated with the corresponding microstructure of the ribbon was tested at different strain rates. Striation and veining patterns were observed in the crack propagation zone and the fast fracture zone. The results show that the tensile strength of the ribbons exceeds 1 GPa. Therefore, they are considered to have good potential for industrial applications. This study could contribute to the preparation of low-cost bulk metallic glass.
Journal Article
Structure–Property Relationship in Melt-Spun Poly(hydroxybutyrate-co-3-hexanoate) Monofilaments
2022
Poly(hydroxybutyrate-co-3-hexanoate) (PHBH) is a biodegradable thermoplastic polyester with the potential to be used in textile and medical applications. We have aimed at developing an upscalable melt-spinning method to produce fine biodegradable PHBH filaments without the use of an ice water bath or offline drawing techniques. We have evaluated the effect of different polymer grades (mol% 3-hydroxy hexanoate, molecular weight etc.) and production parameters on the tensile properties of melt-spun filaments. PHBH monofilaments (diameter < 130 µm) have been successfully melt-spun and online drawn from three different polymer grades. We report thermal and rheological properties of the polymer grades as well as morphological, thermal, mechanical, and structural properties of the melt-spun filaments thereof. Tensile strengths up to 291 MPa have been achieved. Differences in tensile performance have been correlated to structural differences with wide-angle X-ray diffraction and small-angle X-ray scattering. The measurements obtained have revealed that a synergetic interaction of a highly oriented non-crystalline mesophase with highly oriented α-crystals leads to increased tensile strength. Additionally, the effect of aging on the structure and tensile performance has been investigated.
Journal Article
Quality Prediction and Abnormal Processing Parameter Identification in Polypropylene Fiber Melt Spinning Using Artificial Intelligence Machine Learning and Deep Learning Algorithms
by
Liao, Yu-Shu
,
Gope, Amit Kumar
,
Kuo, Chung-Feng Jeffrey
in
Accuracy
,
Algorithms
,
Artificial intelligence
2022
Melt spinning machines must be set up according to the process parameters that result in the best end product quality. In this study, artificial intelligence algorithms were employed to create a system that detects abnormal processing parameters and suggests strategies to improve quality. Polypropylene (PP) was selected as the experimental material, and the quality achieved by adjusting the melt spinning machine’s processing parameter settings was used as the basis for judgement. The processing parameters included screw temperature, gear pump temperature, die head temperature, screw speed, gear pump speed, and take-up speed as the six control factors. The four quality characteristics included fineness, breaking strength, elongation at break, and elastic energy modulus. In the first part of our study, we applied fast deep-learning characteristic grid calculations on a 440-item historical data set to train a deep learning neural network and determine methods for multi-quality optimization. In the second part, with the best processing parameters as a benchmark, and given abnormal quality data derived from processing parameter settings deviating from these optimal values, several machine learning and deep learning methods were compared in their ability to find the settings responsible for the abnormal data, which was randomly split into a 210-item training data set and a 210-item verification data set. The random forest method proved to be the best at identifying responsible parameter settings, with accuracy rates of single and double identification classifications together of 100%, for single factor classification of 98.3%, and for double factor classification of 96.0%, thereby confirming that the diagnostic method proposed in this study can effectively predict product abnormality and find the parameter settings responsible for product abnormality.
Journal Article
Numerical simulation studies of jet rapid solidification technology for magnetic materials: a review
2024
Jet rapid solidification (JRS) is a key process to obtain the ribbon of magnetic materials. Numerical simulation is an effective method to analyze real-time distribution of status parameters during the JRS process and optimize the process. In this paper, the numerical simulation research in two JRS processes, namely, planar flow casting (PFC) and melt spinning (MS), is reviewed. First, based on the principle of rapid solidification, the working principles of PFC and MS processes are summarized and distinguished. The theoretical models, analytical models, and research methods of PFC and MS processes are further introduced and compared in three main research aspects, denoted as melt puddle, cooling roller, and inclusions in the tundish. Regarding the melt puddle, the influence of the melt puddle on the thickness of rapidly solidified ribbons is analyzed. The flow behavior and heat transfer analysis of melt puddle are discussed. In terms of the cooling roller, numerical analyses of the cooling roller structure optimization, parameter optimization, and “fluid–solid-thermal” coupling are summarized. Moreover, the simulation of the movement of inclusions in the PFC tundish is compared. Lastly, the current challenges and future opportunities are also addressed. The development of high-quality JRS ribbons has significant theoretical, social, and economic significance because its quality and stability determine the final characteristics of magnets. Therefore, the application of numerical simulation technology in the JRS process is beneficial for optimizing process routes and system structures, achieving the visual tracking of process, and objectively guiding the development of new JRS equipment.
Journal Article
Biodegradable Fiber Preparation Technique to Meet Industrial Requisites Through Sheath-Core Melt-Spinning
by
Shim, Jun-Yeop
,
Yoo, Jin
,
Kim, Ga Hee
in
Biodegradability
,
Biodegradable materials
,
Biodegradation
2025
Biodegradable polymers are essential for sustainable plastic life cycles and contribute to a carbon-neutral society. Here, we explore the development of biodegradable fibers with excellent mechanical properties using polypropylene (PP) and thermoplastic starch (TPS) blends. To address the inherent immiscibility between hydrophobic PP and hydrophilic TPS, hydrophilic modification and a masterbatch approach were employed. Melt-spinning trials demonstrated that the modified PP and TPS blends (mPP/TPS) exhibited excellent spinnability and processability comparable to virgin PP. A sheath-core configuration was introduced to enhance biodegradability while maintaining structural stability, with an mPP-rich part as the core and a TPS-rich part with a biodegradable promoter (BP) as the sheath. SEM and DSC analyses confirmed strong interfacial compatibility, uniform fiber morphology, and single melting points, indicating no phase separation. Mechanical testing showed that the sheath-core fibers met industrial requirements, achieving a tenacity of up to 2.47 gf/den and tensile strain above 73%. The addition of a BP increased the biodegradability rate, with PP/TPS/BP fibers achieving 65.93% biodegradation after 115 days, compared to 37.00% for BP-free fibers. These results demonstrate the feasibility of blending petroleum-based polymers with bio-based components to create fibers that balance biodegradability, spinnability, and mechanical performance, offering a sustainable solution for industrial applications.
Journal Article
Exploring the Underlying Mechanisms of Reduced Elasticity in PA6/PA66 Bicomponent Melt-Spun Fibers: An Investigation of Viscoelastic Properties and Simulation Analysis
2025
This study conducts a detailed viscoelastic simulation of the side-by-side PA6/PA66 bicomponent melt spinning process to investigate the mechanisms behind reduced fiber elasticity. A two-dimensional (2D) axisymmetric finite element model was developed using ANSYS Polyflow, incorporating the Phan–Thien–Tanner (PTT) constitutive equation and a non-isothermal crystallization model. Simulation outcomes were validated with experimental and published data, showing close agreement in fiber radius, velocity, and temperature profiles (within 8% deviation). Results indicate that the dominance of the higher-viscosity PA66 phase induces uneven stress distributions and localized crystallization, leading to decreased elastic recovery. Higher winding speeds amplify this effect. This work offers a predictive framework for optimizing industrial melt spinning conditions to improve elasticity in bicomponent fibers. Key results indicate that the dominance of the PA66 component—due to its higher melt viscosity—leads to uneven stress distribution, elevated tensile stress, and localized crystallinity peaks along the spin line. These factors collectively contribute to reduced elastic recovery in the fiber. Moreover, increased winding speeds amplify axial stress and crystallinity disparities, further exacerbating the stiffness of the final product. In contrast, better elasticity was associated with lower pressure drop, balanced crystallinity, and minimized axial velocity differences between the two polymer phases. The findings offer valuable insights into optimizing industrial melt spinning processes to enhance fiber elasticity. This research not only improves fundamental understanding of viscoelastic flow behavior in bicomponent spinning but also provides a predictive framework for tailoring mechanical properties of fibers through process and material parameter adjustments.
Journal Article
Melt-Spun Fibers from Bio-Based Polyester–Fiber Structure Development in High-Speed Melt Spinning of Poly(ethylene 2,5-furandicarboxylate) (PEF)
2021
Poly(ethylene 2,5-furandicarboxylate) (PEF) is regarded as a bio-based alternative or complementary polyester for the widely used fossil resource-based polyester, poly(ethylene terephthalate) (PET). High-speed melt spinning of PEF of low and high molecular weight (L-PEF, H-PEF) was conducted, and the structure and properties of the resultant as-spun fibers were investigated. The occurrence of orientation-induced crystallization was confirmed for the H-PEF at the take-up velocity of 6.0 km/min, the highest speed for producing PET fibers in the industry. Molecular orientation and crystallinity of the as-spun fibers increased with the increase of take-up velocity, where the H-PEF fibers always showed a higher degree of structural development than the L-PEF fibers. The tensile modulus of the high-speed spun H-PEF fibers was relatively low at 5 GPa, whereas a sufficiently high tensile strength of approximately 500 MPa was measured. These values are adequately high for the application in the general semi-engineering fiber field.
Journal Article