Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11
result(s) for
"Memory Consolidation - radiation effects"
Sort by:
Locus coeruleus and dopaminergic consolidation of everyday memory
by
Yamasaki, Miwako
,
Spooner, Patrick A.
,
Deisseroth, Karl
in
631/378/1595/1554
,
631/378/1595/2638
,
Animals
2016
The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH
+
) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH
+
neurons project more profusely than ventral tegmental area TH
+
neurons to the hippocampus, optogenetic activation of locus coeruleus TH
+
neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH
+
photoactivation are sensitive to hippocampal D
1
/D
5
receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1
ex vivo
. Thus, locus coeruleus TH
+
neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.
Projections from the locus coeruleus, an area typically defined by noradrenergic signalling, to the hippocampus drive novelty-based memory enhancement through possible co-release of dopamine.
Memory consolidation in the locus coeruleus
Memory retention can be enhanced when something novel or categorically relevant occurs shortly before or after the time of memory encoding, as in 'flashbulb memory'. Dopamine-based mechanisms originating in the ventral tegmental area have been implicated in the phenomenon. These authors suggest that projections from the locus coeruleus—typically defined by noradrenergic signalling—to the hippocampus drive this novelty-based memory enhancement through the possible local release of dopamine.
Journal Article
Optogenetic reactivation of memory ensembles in the retrosplenial cortex induces systems consolidation
by
Cowansage, Kiriana K.
,
Yoo, Eun J.
,
Cardozo, Leonardo M.
in
Activation
,
Anesthesia
,
Animal memory
2019
The neural circuits underlying memory change over prolonged periods after learning, in a process known as systems consolidation. Postlearning spontaneous reactivation of memory-related neural ensembles is thought to mediate this process, although a causal link has not been established. Here we test this hypothesis in mice by using optogenetics to selectively reactivate neural ensembles representing a contextual fear memory (sometimes referred to as engram neurons). High-frequency stimulation of these ensembles in the retrosplenial cortex 1 day after learning produced a recent memory with features normally observed in consolidated remote memories, including higher engagement of neocortical areas during retrieval, contextual generalization, and decreased hippocampal dependence. Moreover, this effect was only present if memory ensembles were reactivated during sleep or light anesthesia. These results provide direct support for postlearning memory ensemble reactivation as a mechanism of systems consolidation, and show that this process can be accelerated by ensemble reactivation in an unconscious state.
Journal Article
Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance
2017
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Journal Article
Optogenetically Blocking Sharp Wave Ripple Events in Sleep Does Not Interfere with the Formation of Stable Spatial Representation in the CA1 Area of the Hippocampus
by
Ranguel Guerrero, Damaris K.
,
O’Neill, Joseph
,
Csicsvari, Jozsef
in
Animal behavior
,
Animal memory
,
Animals
2016
During hippocampal sharp wave/ripple (SWR) events, previously occurring, sensory input-driven neuronal firing patterns are replayed. Such replay is thought to be important for plasticity-related processes and consolidation of memory traces. It has previously been shown that the electrical stimulation-induced disruption of SWR events interferes with learning in rodents in different experimental paradigms. On the other hand, the cognitive map theory posits that the plastic changes of the firing of hippocampal place cells constitute the electrophysiological counterpart of the spatial learning, observable at the behavioral level. Therefore, we tested whether intact SWR events occurring during the sleep/rest session after the first exploration of a novel environment are needed for the stabilization of the CA1 code, which process requires plasticity. We found that the newly-formed representation in the CA1 has the same level of stability with optogenetic SWR blockade as with a control manipulation that delivered the same amount of light into the brain. Therefore our results suggest that at least in the case of passive exploratory behavior, SWR-related plasticity is dispensable for the stability of CA1 ensembles.
Journal Article
Neuroprotection of Radiosensitive Juvenile Mice by Ultra-High Dose Rate FLASH Irradiation
by
Allen, Barrett D.
,
Montay-Gruel, Pierre
,
Giedzinski, Erich
in
Brain cancer
,
Brain tumors
,
Cognition
2020
Major advances in high precision treatment delivery and imaging have greatly improved the tolerance of radiotherapy (RT); however, the selective sparing of normal tissue and the reduction of neurocognitive side effects from radiation-induced toxicities remain significant problems for pediatric patients with brain tumors. While the overall survival of pediatric patients afflicted with medulloblastoma (MB), the most common type primary brain cancer in children, remains high (≥80%), lifelong neurotoxic side-effects are commonplace and adversely impact patients’ quality of life. To circumvent these clinical complications, we have investigated the capability of ultra-high dose rate FLASH-radiotherapy (FLASH-RT) to protect the radiosensitive juvenile mouse brain from normal tissue toxicities. Compared to conventional dose rate (CONV) irradiation, FLASH-RT was found to ameliorate radiation-induced cognitive dysfunction in multiple independent behavioral paradigms, preserve developing and mature neurons, minimize microgliosis and limit the reduction of the plasmatic level of growth hormone. The protective “FLASH effect” was pronounced, especially since a similar whole brain dose of 8 Gy delivered with CONV-RT caused marked reductions in multiple indices of behavioral performance (objects in updated location, novel object recognition, fear extinction, light-dark box, social interaction), reductions in the number of immature (doublecortin+) and mature (NeuN+) neurons and increased neuroinflammation, adverse effects that were not found with FLASH-RT. Our data point to a potentially innovative treatment modality that is able to spare, if not prevent, many of the side effects associated with long-term treatment that disrupt the long-term cognitive and emotional well-being of medulloblastoma survivors.
Journal Article
Effects of transcranial magnetic stimulation over the left posterior superior temporal gyrus on picture-word interference
2020
Word-production theories argue that during language production, a concept activates multiple lexical candidates in left temporal cortex, and the intended word is selected from this set. Evidence for theories on spoken-word production comes, for example, from the picture-word interference task, where participants name pictures superimposed by congruent (e.g., picture: rabbit, distractor “rabbit”), categorically related (e.g., distractor “sheep”), or unrelated (e.g., distractor “fork”) words. Typically, whereas congruent distractors facilitate naming, related distractors slow down picture naming relative to unrelated distractors, resulting in semantic interference. However, the neural correlates of semantic interference are debated. Previous neuroimaging studies have shown that the left mid-to-posterior STG (pSTG) is involved in the interference associated with semantically related distractors. To probe the functional relevance of this area, we targeted the left pSTG with focal repetitive transcranial magnetic stimulation (rTMS) while subjects performed a picture-word interference task. Unexpectedly, pSTG stimulation did not affect the semantic interference effect but selectively increased the congruency effect (i.e., faster naming with congruent distractors). The facilitatory TMS effect selectively occurred in the more difficult list with an overall lower name agreement. Our study adds new evidence to the causal role of the left pSTG in the interaction between picture and distractor representations or processing streams, only partly supporting previous neuroimaging studies. Moreover, the observed unexpected condition-specific facilitatory rTMS effect argues for an interaction of the task- or stimulus-induced brain state with the modulatory TMS effect. These issues should be systematically addressed in future rTMS studies on language production.
Journal Article
Rapid Changes in the Light/Dark Cycle Disrupt Memory of Conditioned Fear in Mice
2010
Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD) cycle. Such \"jet lag\" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body.
We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts.
Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.
Journal Article
Toxic effects of 50 Hz electromagnetic field on memory consolidation in male and female mice
by
Derakhshan-Barjoei, Pouya
,
Foroozandeh, Elham
,
Jadidi, Mohsen
in
Animal cognition
,
Animals
,
Behavior, Animal - radiation effects
2013
In this study, the effect of exposure to an 8 mT, 50 Hz extremely low-frequency electromagnetic field (ELF EMF) on memory consolidation of adult male and female mice was studied. For this purpose male and female mice were randomly distributed among six groups (n = 10 in each group). Using passive avoidance task, despite its natural tendency, mouse learns to stay on a small platform to avoidant electric shock. Immediately after the learning session, laboratory animals in the experimental groups were placed in an 8 mT, 50 Hz sinusoidal EMF for 4 h. The second male and female groups were sham exposed (exposure device off) and the third groups were considered as the controls. Twenty-four hours after the learning session, the animals were placed on small platform again and step-down latency was measured as the memory consolidation index. Significant (p < 0.05) decreases were determined among groups in memory function and results showed that exposure to an 8 mT, 50 Hz EMF for 4 h has devastating effects on memory consolidation in male and female mice.
Journal Article
Electromagnetic Field Effect or Simply Stress? Effects of UMTS Exposure on Hippocampal Longterm Plasticity in the Context of Procedure Related Hormone Release
by
Ladage, Kerstin
,
Bitz, Andreas
,
Hansen, Volkert
in
Absorption
,
Adrenocorticotropic hormone
,
Adrenocorticotropic Hormone - metabolism
2011
Harmful effects of electromagnetic fields (EMF) on cognitive and behavioural features of humans and rodents have been controversially discussed and raised persistent concern about adverse effects of EMF on general brain functions. In the present study we applied radio-frequency (RF) signals of the Universal Mobile Telecommunications System (UMTS) to full brain exposed male Wistar rats in order to elaborate putative influences on stress hormone release (corticosteron; CORT and adrenocorticotropic hormone; ACTH) and on hippocampal derived synaptic long-term plasticity (LTP) and depression (LTD) as electrophysiological hallmarks for memory storage and memory consolidation. Exposure was computer controlled providing blind conditions. Nominal brain-averaged specific absorption rates (SAR) as a measure of applied mass-related dissipated RF power were 0, 2, and 10 W/kg over a period of 120 min. Comparison of cage exposed animals revealed, regardless of EMF exposure, significantly increased CORT and ACTH levels which corresponded with generally decreased field potential slopes and amplitudes in hippocampal LTP and LTD. Animals following SAR exposure of 2 W/kg (averaged over the whole brain of 2.3 g tissue mass) did not differ from the sham-exposed group in LTP and LTD experiments. In contrast, a significant reduction in LTP and LTD was observed at the high power rate of SAR (10 W/kg). The results demonstrate that a rate of 2 W/kg displays no adverse impact on LTP and LTD, while 10 W/kg leads to significant effects on the electrophysiological parameters, which can be clearly distinguished from the stress derived background. Our findings suggest that UMTS exposure with SAR in the range of 2 W/kg is not harmful to critical markers for memory storage and memory consolidation, however, an influence of UMTS at high energy absorption rates (10 W/kg) cannot be excluded.
Journal Article
Effects of proton radiation on evoked and spontaneous neuronal activity in the hippocampus of APP/PSEN1 transgenic mice
by
Rudobeck, Emil
,
Szucs, Attila
,
Vlkolinsky, Roman
in
Advertising executives
,
Alzheimer's disease
,
Amplitudes
2014
Ground-based studies on space radiation indicate that exposure to charged particle radiation at relatively low doses may impair neuronal functions. Decrements in excitatory synaptic transmission and plasticity in the hippocampus have been previously reported in mouse brains irradiated with iron nuclei, but relatively little is known about the effects of protons on the synaptic activity in the hippocampus. Behavioral and neurophysiological decrements in irradiated subjects are also commonly observed in Alzheimer's disease (AD), and we hypothesized that irradiation with protons may exacerbate AD-like neurodegenerative pathology. We used transgenic (TG) mice with AD-like neurodegeneration to test whether whole-body irradiation with protons (150 MeV; 0.1, 0.5, 1 Gy) accelerates the onset of AD and/or exacerbates synaptic impairments. We measured evoked excitatory synaptic potentials, synaptic plasticity and spontaneous oscillations in hippocampal slices prepared from APP/PSEN1 double TG mice (males only) at 6 and 9 months post-irradiation.Our electrophysiological recordings indicate that most of the radiation-induced synaptic decrements can be observed at 9 months rather than 6 months post-irradiation and they are differently expressed in TG and wild-type (WT) mice. Presynaptic excitability evaluated by the amplitude of fiber volleys was significantly increased in non-irradiated TG mice when compared with non-irradiated WT mice, and irradiation did not cause further alterations. The post-synaptic, dendritic excitability, evaluated by the initial slope of the excitatory post-synaptic potentials (EPSPs), was reduced in TG mice exposed to 0.5 Gy, but increased relative to WT mice at the same dose. Interestingly, the suppressive effect on EPSP in TG mice was not observed at 1 Gy. Post-synaptic firing of action potentials, evaluated by the amplitude of population spikes (PS), was increased in non-irradiated TG mice when compared with WT controls. However, these increases were significantly reduced by irradiation at 0.1 and 1 Gy. Long-term potentiation of the EPSPs, a widely used electrophysiological correlate of memory formation, was not significantly affected by irradiation. Last, in WT mice, we observed a significant radiation-induced decrease in the frequency of epileptiform oscillations in the CA3–CA1 network triggered by reduced concentration of extracellular magnesium. These spontaneous waveforms (SW) are reminiscent of ‘sharp-wave/ripple complexes’ that have been associated with memory consolidation in the hippocampus. Interestingly, in the behavioral part of our project, irradiation impaired hippocampal learning in WT mice, while it did not affect performance in TG mice [
1]. This may indicate altered memory consolidation in irradiated WT mice, where we observed significant negative correlation between SW and increased swim distance in water maze. Our data indicate that irradiation with protons at low doses may differently affect synaptic parameters in WT and APP/PSEN1 TG mice. Thus, different neurological or cognitive decrements may be expected in normal subjects relative to those prone to AD-like pathology. The most prominent radiation-induced decrements in TG mice were reduced dendritic excitability and firing of CA1 neurons. The reduction in PS amplitudes in TG mice suggests that proton radiation may impair communication of the hippocampal neurons with other brain areas. Memory formation and consolidation processes in TG mice are likely not further affected by the irradiation.
Journal Article