Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Is Full-Text Available
      Is Full-Text Available
      Clear All
      Is Full-Text Available
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Language
    • Place of Publication
    • Contributors
    • Location
370 result(s) for "Memory disorders Pathophysiology."
Sort by:
Memory in autism : theory and evidence
Many people with autism spectrum disorders (ASD) are remarkably proficient at remembering how things look and sound and are good at rote learning. However, all ASD sufferers have poor ability to recall personal memories and relive experiences. This book assembles research to examine why this happens and the effects it has.
HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition
The hypothalamic–pituitary–adrenal (HPA) axis has been implicated in the pathophysiology of a variety of mood and cognitive disorders. Neuroendocrine studies have demonstrated HPA axis overactivity in major depression, a relationship of HPA axis activity to cognitive performance and a potential role of HPA axis genetic variation in cognition. The present study investigated the simultaneous roles HPA axis activity, clinical symptomatology and HPA genetic variation play in cognitive performance. Patients with major depression with psychotic major depression (PMD) and with nonpsychotic major depression (NPMD) and healthy controls (HC) were studied. All participants underwent a diagnostic interview and psychiatric ratings, a comprehensive neuropsychological battery, overnight hourly blood sampling for cortisol and genetic assessment. Cognitive performance differed as a function of depression subtype. Across all subjects, cognitive performance was negatively correlated with higher cortisol, and PMD patients had higher cortisol than did NPMDs and HCs. Cortisol, clinical symptoms and variation in genes, NR3C1 (glucocorticoid receptor; GR) and NR3C2 (mineralocorticoid receptor; MR) that encode for GRs and MRs, predicted cognitive performance. Beyond the effects of cortisol, demographics and clinical symptoms, NR3C1 variation predicted attention and working memory, whereas NR3C2 polymorphisms predicted memory performance. These findings parallel the distribution of GR and MR in primate brain and their putative roles in specific cognitive tasks. HPA axis genetic variation and activity were important predictors of cognition across the entire sample of depressed subjects and HR. GR and MR genetic variation predicted unique cognitive functions, beyond the influence of cortisol and clinical symptoms. GR genetic variation was implicated in attention and working memory, whereas MR was implicated in verbal memory.
The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders
Increasing evidence suggests estrogen and estrogen signaling pathway disturbances across psychiatric disorders. Estrogens are not only crucial in sexual maturation and reproduction but are also highly involved in a wide range of brain functions, such as cognition, memory, neurodevelopment, and neuroplasticity. To add more, the recent findings of its neuroprotective and anti-inflammatory effects have grown interested in investigating its potential therapeutic use to psychiatric disorders. In this review, we analyze the emerging literature on estrogen receptors and psychiatric disorders in cellular, preclinical, and clinical studies. Specifically, we discuss the contribution of estrogen receptor and estrogen signaling to cognition and neuroprotection via mediating multiple neural systems, such as dopaminergic, serotonergic, and glutamatergic systems. Then, we assess their disruptions and their potential implications for pathophysiologies in psychiatric disorders. Further, in this review, current treatment strategies involving estrogen and estrogen signaling are evaluated to suggest a future direction in identifying novel treatment strategies in psychiatric disorders.
Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer’s disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches
In patients with Parkinson's disease, heterogeneous cholinergic system changes can occur in different brain regions. These changes correlate with a range of clinical features, both motor and non-motor, that are refractory to dopaminergic therapy, and can be conceptualised within a systems-level framework in which nodal deficits can produce circuit dysfunctions. The topographies of cholinergic changes overlap with neural circuitries involved in sleep and cognitive, motor, visuo-auditory perceptual, and autonomic functions. Cholinergic deficits within cognition network hubs predict cognitive deficits better than do total brain cholinergic changes. Postural instability and gait difficulties are associated with cholinergic system changes in thalamic, caudate, limbic, neocortical, and cerebellar nodes. Cholinergic system deficits can involve also peripheral organs. Hypercholinergic activity of mesopontine cholinergic neurons in people with isolated rapid eye movement (REM) sleep behaviour disorder, as well as in the hippocampi of cognitively normal patients with Parkinson's disease, suggests early compensation during the prodromal and early stages of Parkinson's disease. Novel pharmacological and neurostimulation approaches could target the cholinergic system to treat motor and non-motor features of Parkinson's disease.
Cognitive impairment in schizophrenia: aetiology, pathophysiology, and treatment
Cognitive deficits are a core feature of schizophrenia, account for much of the impaired functioning associated with the disorder and are not responsive to existing treatments. In this review, we first describe the clinical presentation and natural history of these deficits. We then consider aetiological factors, highlighting how a range of similar genetic and environmental factors are associated with both cognitive function and schizophrenia. We then review the pathophysiological mechanisms thought to underlie cognitive symptoms, including the role of dopamine, cholinergic signalling and the balance between GABAergic interneurons and glutamatergic pyramidal cells. Finally, we review the clinical management of cognitive impairments and candidate novel treatments.
Long-Term Sequelae of COVID-19: A Systematic Review and Meta-Analysis of One-Year Follow-Up Studies on Post-COVID Symptoms
Emerging evidence has shown that COVID-19 survivors could suffer from persistent symptoms. However, it remains unclear whether these symptoms persist over the longer term. This study aimed to systematically synthesise evidence on post-COVID symptoms persisting for at least 12 months. We searched PubMed and Embase for papers reporting at least one-year follow-up results of COVID-19 survivors published by 6 November 2021. Random-effects meta-analyses were conducted to estimate pooled prevalence of specific post-COVID symptoms. Eighteen papers that reported one-year follow-up data from 8591 COVID-19 survivors were included. Fatigue/weakness (28%, 95% CI: 18–39), dyspnoea (18%, 95% CI: 13–24), arthromyalgia (26%, 95% CI: 8–44), depression (23%, 95% CI: 12–34), anxiety (22%, 95% CI: 15–29), memory loss (19%, 95% CI: 7–31), concentration difficulties (18%, 95% CI: 2–35), and insomnia (12%, 95% CI: 7–17) were the most prevalent symptoms at one-year follow-up. Existing evidence suggested that female patients and those with more severe initial illness were more likely to suffer from the sequelae after one year. This study demonstrated that a sizeable proportion of COVID-19 survivors still experience residual symptoms involving various body systems one year later. There is an urgent need for elucidating the pathophysiologic mechanisms and developing and testing targeted interventions for long-COVID patients.
Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having “an orchestra without a conductor.” Kraepelin further speculated that this “conductor” was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Neuropsychological differences between treatment-resistant and treatment-responsive schizophrenia: a meta-analysis
Antipsychotic treatment resistance affects up to a third of individuals with schizophrenia. Of those affected, 70–84% are reported to be treatment resistant from the outset. This raises the possibility that the neurobiological mechanisms of treatment resistance emerge before the onset of psychosis and have a neurodevelopmental origin. Neuropsychological investigations can offer important insights into the nature, origin and pathophysiology of treatment-resistant schizophrenia (TRS), but methodological limitations in a still emergent field of research have obscured the neuropsychological discriminability of TRS. We report on the first systematic review and meta-analysis to investigate neuropsychological differences between TRS patients and treatment-responsive controls across 17 published studies (1864 participants). Five meta-analyses were performed in relation to (1) executive function, (2) general cognitive function, (3) attention, working memory and processing speed, (4) verbal memory and learning, and (5) visual−spatial memory and learning. Small-to-moderate effect sizes emerged for all domains. Similarly to previous comparisons between unselected, drug-naïve and first-episode schizophrenia samples v. healthy controls in the literature, the largest effect size was observed in verbal memory and learning [dl = −0.53; 95% confidence interval (CI) −0.29 to −0.76; z = 4.42; p < 0.001]. A sub-analysis of language-related functions, extracted from across the primary domains, yielded a comparable effect size (dl = −0.53, 95% CI −0.82 to −0.23; z = 3.45; p < 0.001). Manipulating our sampling strategy to include or exclude samples selected for clozapine response did not affect the pattern of findings. Our findings are discussed in relation to possible aetiological contributions to TRS.
An integrated program of computer-presented and physical cognitive training exercises for children with attention-deficit/hyperactivity disorder
This study integrated an experimental medicine approach and a randomized cross-over clinical trial design following CONSORT recommendations to evaluate a cognitive training (CT) intervention for attention deficit hyperactivity disorder (ADHD). The experimental medicine approach was adopted because of documented pathophysiological heterogeneity within the diagnosis of ADHD. The cross-over design was adopted to provide the intervention for all participants and make maximum use of data. Children (n = 93, mean age 7.3 +/- 1.1 years) with or sub-threshold for ADHD were randomly assigned to CT exercises over 15 weeks, before or after 15 weeks of treatment-as-usual (TAU). Fifteen dropped out of the CT/TAU group and 12 out of the TAU/CT group, leaving 66 for cross-over analysis. Seven in the CT/TAU group completed CT before dropping out making 73 available for experimental medicine analyses. Attention, response inhibition, and working memory were assessed before and after CT and TAU. Children were more likely to improve with CT than TAU (27/66 v. 13/66, McNemar p = 0.02). Consistent with the experimental medicine hypotheses, responders improved on all tests of executive function (p = 0.009-0.01) while non-responders improved on none (p = 0.27-0.81). The degree of clinical improvement was predicted by baseline and change scores in focused attention and working memory (p = 0.008). The response rate was higher in inattentive and combined subtypes than hyperactive-impulsive subtype (p = 0.003). Targeting cognitive dysfunction decreases clinical symptoms in proportion to improvement in cognition. Inattentive and combined subtypes were more likely to respond, consistent with targeted pathology and clinically relevant heterogeneity within ADHD.