Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
191
result(s) for
"Menkes disease"
Sort by:
Conserved residues modulate copper release in human copper chaperone Atox1
by
Hussain, Faiza
,
Olson, John S
,
Wittung-Stafshede, Pernilla
in
Adenosine triphosphatases
,
Adenosine Triphosphatases - chemistry
,
Adenosine Triphosphatases - genetics
2008
It is unclear how the human copper (Cu) chaperone Atox1 delivers Cu to metal-binding domains of Wilson and Menkes disease proteins in the cytoplasm. To begin to address this problem, we have characterized Cu(I) release from wild-type Atox1 and two point mutants (Met₁₀Ala and Lys₆₀Ala). The dynamics of Cu(I) displacement from holo-Atox1 were measured by using the Cu(I) chelator bicinchonic acid (BCA) as a metal acceptor. BCA removes Cu(I) from Atox1 in a three-step process involving the bimolecular formation of an initial Atox1-Cu-BCA complex followed by dissociation of Atox1 and the binding of a second BCA to generate apo-Atox1 and Cu-BCA₂. Both mutants lose Cu(I) more readily than wild-type Atox1 because of more rapid and facile displacement of the protein from the Atox1-Cu-BCA intermediate by the second BCA. Remarkably, Cu(I) uptake from solution by BCA is much slower than the transfer from holo-Atox1, presumably because of slow dissociation of DTT-Cu complexes. These results suggest that Cu chaperones play a key role in making Cu(I) rapidly accessible to substrates and that the activated protein-metal-chelator complex may kinetically mimic the ternary chaperone-metal-target complex involved in Cu(I) transfer in vivo.
Journal Article
Menkes disease
by
Tümer, Zeynep
,
Møller, Lisbeth B
in
Adenosine Triphosphatases - chemistry
,
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - metabolism
2010
Menkes disease (MD) is a lethal multisystemic disorder of copper metabolism. Progressive neurodegeneration and connective tissue disturbances, together with the peculiar ‘kinky’ hair are the main manifestations. MD is inherited as an X-linked recessive trait, and as expected the vast majority of patients are males. MD occurs due to mutations in the ATP7A gene and the vast majority of ATP7A mutations are intragenic mutations or partial gene deletions. ATP7A is an energy dependent transmembrane protein, which is involved in the delivery of copper to the secreted copper enzymes and in the export of surplus copper from cells. Severely affected MD patients die usually before the third year of life. A cure for the disease does not exist, but very early copper-histidine treatment may correct some of the neurological symptoms.
Journal Article
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells
by
Fahrni, Christoph J.
,
Zlatic, Stephanie A.
,
McCallum, Adam M.
in
Affinity
,
Biochemistry
,
Biological Sciences
2019
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2′-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Journal Article
Pharmacokinetics of CuGTSM, a Novel Drug Candidate, in a Mouse Model of Menkes Disease
2021
PurposeMenkes disease is a rare hereditary disease in which systemic deficiency of copper due to mutation of the ATP7A gene causes severe neurodegenerative disorders. The present parenteral drugs have limited efficacy, so there is a need for an efficacious drug that can be administered orally. This study focused on glyoxal-bis (N(4)-methylthiosemicarbazonato)-copper(II (CuGTSM), which has shown efficacy in macular mice, a murine model of Menkes disease, and examined its pharmacokinetics. In addition, nanosized CuGTSM (nCuGTSM) was prepared, and the effects of nanosizing on CuGTSM pharmacokinetics were investigated.MethodsCuGTSM or nCuGTSM (10 mg/kg) was administered orally to male macular mice or C3H/HeNCrl mice (control), and plasma was obtained by serial blood sampling. Plasma concentrations of CuGTSM and GTSM were measured by LC-MS/MS and pharmacokinetic parameters were calculated.ResultsWhen CuGTSM was administered orally, CuGTSM and GTSM were both detected in the plasma of both mouse strains. When nCuGTSM was administered, the Cmax was markedly higher, and the mean residence time was longer than when CuGTSM was administered for both CuGTSM and GTSM in both mouse strains. With macular mice, the AUC ratio (GTSM/CuGTSM) was markedly higher and the plasma CuGTSM concentration was lower than with C3H/HeNCrl mice when either CuGTSM or nCuGTSM was administered.ConclusionAbsorption of orally administered CuGTSM was confirmed in macular mice, and the nano-formulation improved the absorption and retention of CuGTSM in the body. However, the plasma concentration of CuGTSM was lower in macular mice than in control mice, suggesting easier dissociation of CuGTSM.
Journal Article
Brain and the whole-body bone imaging appearances in Menkes disease: a case report and literature review
2024
Background
Menkes disease (MD) is a rare, inherited, multisystemic copper metabolism disorder. Classical Menkes disease is characterized by low serum copper and ceruloplasmin concentrations, leading to multiple abnormalities in the whole-body, especially in connective tissue and central nervous system. However, serum copper and ceruloplasmin levels are not reliable diagnostic biomarkers due to the low concentrations in healthy newborns either. The featured imaging manifestations play an important role in diagnosing Menkes disease. To our knowledge, there are few reports on the systemic imaging manifestations of Menkes disease.
Case presentation
A 4-month-old male patient presented with recurrent seizures. He had cognitive, intellectual, growth, gross motor, precision movement, and language developmental lags. The patient’s hemoglobin and serum ceruloplasmin level were low. On MRI, increased intracranial vascular tortuosity, cerebral and cerebellar atrophy, white matter changes, and basal ganglia abnormalities were observed. Plain radiograph revealed wormian bones, rib flaring, metaphyseal spurring, and periosteal reactions in the long bones of the limbs. A pathogenic variant in
ATP7A
gene was identified in the patient, so he was confirmed the diagnosis of Menkes disease. His symptoms did not improve despite symptomatic and supportive treatment during his hospitalization. Unfortunately, the infant died 3 months after leaving hospital.
Conclusion
A comprehensive and intuitive understanding of the disease’s imaging manifestations can help clinicians to identify the disease and avoid delays in care.
Journal Article
The many “faces” of copper in medicine and treatment
by
Popiołek, Łukasz
,
Kocot, Joanna
,
Hordyjewska, Anna
in
Alzheimer Disease - metabolism
,
Alzheimer's disease
,
Animals
2014
Copper (Cu) is an essential microelement found in all living organisms with the unique ability to adopt two different redox states—in the oxidized (Cu
2+
) and reduced (Cu
+
). It is required for survival and serves as an important catalytic cofactor in redox chemistry for proteins that carry out fundamental biological functions, important in growth and development. The deficit of copper can result in impaired energy production, abnormal glucose and cholesterol metabolism, increased oxidative damage, increased tissue iron (Fe) accrual, altered structure and function of circulating blood and immune cells, abnormal neuropeptides synthesis and processing, aberrant cardiac electrophysiology, impaired myocardial contractility, and persistent effects on the neurobehavioral and the immune system. Increased copper level has been found in several disorders like e.g.: Wilson’s disease or Menke’s disease. New findings with the great potential for impact in medicine include the use of copper-lowering therapy for antiangiogenesis, antifibrotic and anti-inflammatory purposes. The role of copper in formation of amyloid plaques in Alzheimer’s disease, and successful treatment of this disorder in rodent model by copper chelating are also of interest. In this work we will try to describe essential aspects of copper in chosen diseases. We will represent the evidence available on adverse effect derived from copper deficiency and copper excess. We will try to review also the copper biomarkers (chosen enzymes) that help reflect the level of copper in the body.
Journal Article
Phenotypic diversity of Menkes disease in mottled mice is associated with defects in localisation and trafficking of the ATP7A protein
by
Kim, Byung-Eun
,
Petris, Michael J
in
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - physiology
,
Animals
2007
Owing to mutations in the copper-transporting P-type ATPase, ATP7A (or MNK), patients with Menkes disease (MD) have an inadequate supply of copper to various copper-dependent enzymes. The ATP7A protein is located in the trans-Golgi network, where it transports copper via secretory compartments to copper-dependent enzymes. Raised copper concentrations result in the trafficking of ATP7A to the plasma membrane, where it functions in copper export. An important model of MD is the Mottled mouse, which possesses mutations in Atp7A. The Mottled mouse displays three distinct phenotypic severities: embryonic lethal, perinatal lethal and a longer-lived viable phenotype. However, the effects of mutations from these phenotypic classes on the ATP7A protein are unknown. In this study, we found that these classes of mutation differentially affect the copper transport and trafficking functions of the ATP7A protein. The embryonic lethal mutation, Atp7amo11H (11H), caused mislocalisation of the protein to the endoplasmic reticulum, impaired glycosylation, and abolished copper delivery to the secretory pathway. In contrast, the perinatal lethal and viable mutations, Atp7amoMac (Macular) and Atp7amoVbr (Viable brindle) both resulted in a reduction in copper delivery to the secretory pathway and constitutive trafficking of the ATP7A protein to the plasma membrane in the absence of additional copper. In the case of Viable brindle, this hypertrafficking response was dependent on the catalytic phosphorylation site of ATP7A, whereas no such requirement was found for the Macular mutation. These findings provide evidence that the degree of MD severity in mice is associated with both copper transport and trafficking defects in the ATP7A protein.
Journal Article
Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes
by
Muller, P
,
Klomp, L W J
,
de Bie, P
in
Adenosine Triphosphatases - chemistry
,
Adenosine Triphosphatases - genetics
,
Adenosine Triphosphatases - physiology
2007
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper-transporting P-type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper-induced trafficking, post-translational modifications and protein–protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
Journal Article
Alpha-synuclein null mutation exacerbates the phenotype of a model of Menkes disease in female mice
2025
Human SNCA , which encodes a-synuclein protein ( SNCA ), was the first gene linked to familial Parkinson’s disease (PD). Since the discovery of the genetic link of SNCA to Parkinson’s nearly three decades ago, many studies have investigated the normal function of SNCA protein. However, understanding of the normal function of SNCA is complicated by the lack of a reliable mammalian model of PD; indeed, mice with homozygous null mutations in the Snca gene live a normal lifespan and have only subtle synaptic deficits. Here, we report the first genetic modifier (a sensitized mutation) of a murine Snca null mutation, namely the ATPase copper transporting alpha (Atp7a), an X-linked gene that escapes inactivation in both mice and humans. In humans, mutations in Atp7a are linked to Menkes disease, a disease with pleiotropic and severe neurological phenotypes. Atp7a encodes a copper transporter that supplies the copper co-factor to enzymes that pass through the ER-Golgi network; under some conditions, Atp7a protein may also act to increase copper flux across the cell membrane. Male mice that carry a mutation in Atp7a die within 3 weeks of age regardless of Snca genotype. In contrast, female mice that carry the Atp7a mutation, on an Snca null background, die earlier (prior to 35 days) at a significantly higher rate than those that carry the Atp7a mutation on a wildtype Snca background. Thus, Snca null mutations sensitize female mice to mutations in Atp7a, suggesting that Snca protein may have a protective effect in females, perhaps in neurons, given the co-expression patterns. This study adds to the growing literature suggesting that alterations in a-synuclein structure and/or quantity may manifest in neurological differences in males and females including phenotypes of developmental delays, seizures, muscle weakness and cognitive function.
Journal Article
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle
2021
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Journal Article