Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
587 result(s) for "Mental Fatigue - physiopathology"
Sort by:
Evaluation of walking activity and gait to identify physical and mental fatigue in neurodegenerative and immune disorders: preliminary insights from the IDEA-FAST feasibility study
Background Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. Methods Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren’s syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. Results Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. Conclusions Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.
The Effects of Mental Fatigue on Physical Performance: A Systematic Review
Background Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. It has recently been suggested that mental fatigue can affect physical performance. Objective Our objective was to evaluate the literature on impairment of physical performance due to mental fatigue and to create an overview of the potential factors underlying this effect. Methods Two electronic databases, PubMed and Web of Science (until 28 April 2016), were searched for studies designed to test whether mental fatigue influenced performance of a physical task or influenced physiological and/or perceptual responses during the physical task. Studies using short (<30 min) self-regulatory depletion tasks were excluded from the review. Results A total of 11 articles were included, of which six were of strong and five of moderate quality. The general finding was a decline in endurance performance (decreased time to exhaustion and self-selected power output/velocity or increased completion time) associated with a higher than normal perceived exertion. Physiological variables traditionally associated with endurance performance (heart rate, blood lactate, oxygen uptake, cardiac output, maximal aerobic capacity) were unaffected by mental fatigue. Maximal strength, power, and anaerobic work were not affected by mental fatigue. Conclusion The duration and intensity of the physical task appear to be important factors in the decrease in physical performance due to mental fatigue. The most important factor responsible for the negative impact of mental fatigue on endurance performance is a higher perceived exertion.
Mental fatigue impairs physical activity, technical and decision-making performance during small-sided games
The aim of this study was to investigate the effects of mental fatigue on physical activity, technical and decision-making performance during small-sided games. Nine sub-elite soccer players were enrolled in the study. The players performed two small-sided games on two occasions within a crossover experimental design. Before each game, they underwent a mental fatiguing task (Stroop task) and a control task (documentary watching) in a randomized, counterbalanced order. Players' physical activity, technical, and decision-making performance were obtained during small-sided games by GPS and video scouting. Results showed that distance in acceleration covered per min, negative passes, passing accuracy, and shot accuracy were likely impaired than control task after a mental fatiguing protocol. Decision-making performance of negative passes, passes accuracy, and dribbling accuracy resulted also likely decreased compared with control task. These findings demonstrated that mental fatigue impacted on technical, GPS-derived, and soccer-specific decision-making performance during SSG. In conclusion, avoiding cognitively demanding tasks before playing soccer-specific activities may be advisable to preserve players' physical activity, technical, and decision-making skills.
Mental fatigue correlates with depression of task-related network and augmented DMN activity but spares the reward circuit
Long-lasting and demanding cognitive activity typically leads to mental fatigue (MF). Indirect evidence suggests that MF may be caused by altered motivational processes. Here, we hypothesized that if MF consists in an alteration of motivational states, brain functional changes induced by MF could specifically affect the brain motivation circuit. In order to test this hypothesis, we devised a functional neuroimaging protocol to detect altered brain activity in reward-related brain regions in relation to cognitively induced mental fatigue. Twenty-five healthy participants underwent a FATIGUE and a CONTROL session on different days. In the FATIGUE session, MF was induced by performing a demanding cognitive task (adapted Stroop task) during 90 min, whereas in the CONTROL session, participants were asked to read magazines for the same period of time. We measured the neural consequences of the MF induction during a working memory task (Missing Number task) while modulating extrinsic motivation with block-wise variations in monetary reward. We also tracked participants’ momentary fatigue, anxiety state and intrinsic motivation prior to and following the MF inducement and measurement. Accuracy on the Missing Number Task was lower in the FATIGUE than in the CONTROL condition. Furthermore, subjective MF, but not its behavioral manifestations, was associated with hypoactivity of the task-evoked neural responses. Importantly, activity in regions modulated by reward showed no differences between FATIGUE and CONTROL sessions. In parallel, subjective MF correlated with increased on-task activity and resting-state functional connectivity in the default mode network. These results indicate that subjective mental fatigue is not associated with altered activity in the brain motivation circuit but rather with hypoactivity in task-specific brain regions as well as relative increases of activity and connectivity in the default mode network during and after the task.
The impact of mental fatigue on brain activity: a comparative study both in resting state and task state using EEG
Background Mental fatigue is usually caused by long-term cognitive activities, mainly manifested as drowsiness, difficulty in concentrating, decreased alertness, disordered thinking, slow reaction, lethargy, reduced work efficiency, error-prone and so on. Mental fatigue has become a widespread sub-health condition, and has a serious impact on the cognitive function of the brain. However, seldom studies investigate the differences of mental fatigue on electrophysiological activity both in resting state and task state at the same time. Here, twenty healthy male participants were recruited to do a consecutive mental arithmetic tasks for mental fatigue induction, and electroencephalogram (EEG) data were collected before and after each tasks. The power and relative power of five EEG rhythms both in resting state and task state were analyzed statistically. Results The results of brain topographies and statistical analysis indicated that mental arithmetic task can successfully induce mental fatigue in the enrolled subjects. The relative power index was more sensitive than the power index in response to mental fatigue, and the relative power for assessing mental fatigue was better in resting state than in task state. Furthermore, we found that it is of great physiological significance to divide alpha frequency band into alpha1 band and alpha2 band in fatigue related studies, and at the same time improve the statistical differences of sub-bands. Conclusions Our current results suggested that the brain activity in mental fatigue state has great differences in resting state and task state, and it is imperative to select the appropriate state in EEG data acquisition and divide alpha band into alpha1 and alpha2 bands in mental fatigue related researches.
Neural mechanisms of mental fatigue
Fatigue is defined as a decline in the ability and efficiency of mental and/or physical activities that is caused by excessive mental and/or physical activities. Fatigue can be classified as physical or mental. Mental fatigue manifests as potentially impaired cognitive function and is one of the most significant causes of accidents in modern society. Recently, it has been shown that the neural mechanisms of mental fatigue related to cognitive task performance are more complex than previously thought and that mental fatigue is not caused only by impaired activity in task-related brain regions. There is accumulating evidence supporting the existence of mental facilitation and inhibition systems. These systems are involved in the neural mechanisms of mental fatigue, modulating the activity of task-related brain regions to regulate cognitive task performance. In this review, we propose a new conceptual model: the dual regulation system of mental fatigue. This model contributes to our understanding of the neural mechanisms of mental fatigue and the regulatory mechanisms of cognitive task performance in the presence of mental fatigue.
Effects of mental fatigue on isometric mid-thigh pull performance and muscle activities
This study investigated the effects of mental fatigue on rate of force development (RFD) and peak force during an isometric mid-thigh pull (IMTP), as well as its impact on muscle activation measured by electromyography (EMG) median frequency. Sixteen healthy, resistance-trained males completed two sessions: a control condition and a mentally fatigued state induced by a 30-minute modified Stroop task. IMTP performance and muscle activation were assessed before and after the mental fatigue task. Mental fatigue significantly reduced RFD in the later phase of force generation, specifically within the 20%-80% of maximum force interval (RFD 2080 ) ( p = 0.022, d = 0.638). In contrast, no significant changes were observed in RFD within the initial 0-100 milliseconds (RFD 100 ) or 0-200 milliseconds (RFD 200 ) of contraction, nor in peak force. Additionally, mental fatigue led to a significant increase in EMG median frequency for the rectus femoris during the initial 0-1 second interval ( p = 0.040, d = -0.609), with no significant changes in the medial gastrocnemius or other time intervals. These findings suggest that mental fatigue primarily impacts the later stages of force development, affecting the ability to sustain and develop force over time without compromising peak force. The increase in EMG median frequency for the rectus femoris indicates a possible compensatory response to mental fatigue, underscoring the complex influence of cognitive stress on neuromuscular function. This study highlights the importance of considering mental fatigue in activities requiring sustained or progressively increasing force production.
Graph theory-based analysis of functional connectivity changes in brain networks underlying cognitive fatigue: An EEG study
This investigation was designed to analyze alterations in functional connectivity across brain networks associated with cognitive fatigue through electroencephalogram (EEG) data analysis. Through the application of both global and local graph-theoretical metrics to characterize the topology of brain networks, this study establishes a conceptual framework supporting enhanced detection of cognitive fatigue manifestations while facilitating examination of its neurophysiological substrates. The study cohort comprised neurologically intact individuals aged 20-35 years, recruited from Beijing Rehabilitation Hospital, Capital Medical University between February 6 and September 30, 2024 for participation in a cognitive fatigue induction task. Following acquisition of written informed consent, data before and after the task were obtained, including both subjective fatigue assessments using the Visual analog scale for fatigue (VAS-F) scores and EEG data. The preprocessed EEG signals were segmented into three frequency bands: θ (4-8 Hz),α (8-13 Hz), and β (13-30 Hz). To determine the frequency band exhibiting maximal sensitivity to cognitive fatigue, cross-band comparative power spectral density (PSD) was implemented. The selected frequency band subsequently served as the basis for weighted Phase Lag Index (wPLI) computation, yielding a functional connectivity matrix derived from wPLI measurements. Network topology was evaluated through application of five global graph theory metrics (global efficiency [Eg], local efficiency [Eloc], clustering coefficient [Cp], shortest path length [Lp], and small-world property [Sigma]) complemented by two local graph theory metrics (nodal efficiency [NE] and degree centrality [DC]). This analytical framework enabled systematic comparison of connectivity patterns and topological characteristics between before and after cognitive fatigue states. Statistical analysis revealed significant post-fatigue elevations in global average PSD across all examined frequency bands: α (p < 0.001), θ (p < 0.001), and β (p = 0.004). The α band demonstrated the most pronounced effect size (Cohen's d = 4.23, r = 0.90). Topological analysis of α-band wPLI networks showed enhanced Eg (p = 0.005), Eloc (p < 0.001), and Cp (p < 0.001), whereas Lp displayed significant reduction (p = 0.005). Regional analysis revealed preferential enhancement of NE, particularly in central and anterior cortical regions. The experimental data indicated that α-band activity exhibited the highest sensitivity to cognitive fatigue induced by the sustained Stroop task, establishing a framework for accurate identification of fatigue states. Cognitive fatigue compensatory mechanisms manifested as concurrent improvements in both local and global neural information processing efficiency. Although such adaptive reorganization may compromise overall network efficiency, these findings implied an inherent balance between adaptive network reconfiguration and system efficiency. These results elucidated novel neurophysiological mechanisms underlying cognitive fatigue, substantially advancing our understanding of brain network dynamics during prolonged cognitive demand.
Cognitive fatigue influences students’ performance on standardized tests
Using test data for all children attending Danish public schools between school years 2009/10 and 2012/13, we examine how the time of the test affects performance. Test time is determined by the weekly class schedule and computer availability at the school. We find that, for every hour later in the day, test performance decreases by 0.9% of an SD (95% CI, 0.7–1.0%). However, a 20- to 30-minute break improves average test performance by 1.7% of an SD (95% CI, 1.2–2.2%). These findings have two important policy implications: First, cognitive fatigue should be taken into consideration when deciding on the length of the school day and the frequency and duration of breaks throughout the day. Second, school accountability systems should control for the influence of external factors on test scores.
A novel protocol to induce mental fatigue
Mental fatigue is a commonplace human experience which is the focus of a growing body of research. Whilst researchers in numerous disciplines have attempted to uncover the origins, nature, and effects of mental fatigue, the literature is marked by many contradictory findings. We identified two major methodological problems for mental fatigue research. First, researchers rarely use objective measures of mental fatigue. Instead, they rely heavily on subjective reports as evidence that mental fatigue has been induced in participants. We aimed to develop a task which led to not only a subjective increase in mental fatigue, but a corresponding performance decrement in the mentally fatiguing task as an objective measure. Secondly, current mental fatigue paradigms have low ecological validity – in most prior studies participants have been fatigued with a single repetitive task such as the n-back or Stroop. To move towards a more ecologically valid paradigm, our participants undertook a battery of diverse cognitive tasks designed to challenge different aspects of executive function. The AX-CPT, n-back, mental rotation, and visual search tasks were chosen to challenge response inhibition, working memory, spatial reasoning, and attention. We report results from 45 participants aged 19 to 63 years who completed a two-hour battery comprising four different cognitive tasks. Subjective fatigue ratings and task performance were measured at the beginning and end of the battery. Our novel method resulted in an increase in subjective ratings of fatigue ( p < 0.001) and a reduction in task performance ( p = 0.008). Future research into mental fatigue may benefit from using this task battery.