Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,623 result(s) for "Mercury surface"
Sort by:
Microbial methylation potential of mercury sulfide particles dictated by surface structure
Environmental contamination by mercury in its organometallic form, methylmercury, remains a major global concern due to its neurotoxicity, environmental persistence and biomagnification through the food chain. Accurate prediction of mercury methylation cannot be achieved based on aqueous speciation alone, and there remains limited mechanistic understanding of microbial methylation of particulate-phase mercury. Here we assess the time-dependent changes in structural properties and methylation potential of nanoparticulate mercury using microscopic and spectroscopic analyses, microcosm bioassays and theoretical calculations. We show that the methylation potential of a mercury sulfide mineral ubiquitous in contaminated soils and sediments (nanoparticulate metacinnabar) is determined by its crystal structure. Methylmercury production increases when more of nano-metacinnabar’s exposed surfaces occur as the (111) facet, due to its large binding affinity to methylating bacteria, likely via the protein transporter responsible for mercury cellular uptake prior to methylation. During nanocrystal growth, the (111) facet diminishes, lessening methylation of nano-metacinnabar. However, natural ligands alleviate this process by preferentially adsorbing to the (111) facet, and consequently hinder natural attenuation of mercury methylation. We show that the methylation potential of nanoparticulate mercury is independent of surface area. Instead, the nano-scale surface structure of nanoparticulate mercury is crucial for understanding the environmental behaviour of mercury and other nutrient or toxic soft elements. The environmental behaviour of mercury and other toxic soft elements is in part dictated by the surface structure of nanoparticulates, according to a combination of microcosm bioassays and theoretical calculations.
A globally fragmented and mobile lithosphere on Venus
Venus has been thought to possess a globally continuous lithosphere, in contrast to the mosaic of mobile tectonic plates that characterizes Earth. However, the Venus surface has been extensively deformed, and convection of the underlying mantle, possibly acting in concert with a low-strength lower crust, has been suggested as a source of some surface horizontal strains. The extent of surface mobility on Venus driven by mantle convection, however, and the style and scale of its tectonic expression have been unclear. We report a globally distributed set of crustal blocks in the Venus lowlands that show evidence for having rotated and/or moved laterally relative to one another, akin to jostling pack ice. At least some of this deformation on Venus postdates the emplacement of the locally youngest plains materials. Lithospheric stresses calculated from interior viscous flow models consistent with long-wavelength gravity and topography are sufficient to drive brittle failure in the upper Venus crust in all areas where these blocks are present, confirming that interior convective motion can provide a mechanism for driving deformation at the surface. The limited but widespread lithospheric mobility of Venus, in marked contrast to the tectonic styles indicative of a static lithosphere on Mercury, the Moon, and Mars, may offer parallels to interior–surface coupling on the early Earth, when global heat flux was substantially higher, and the lithosphere generally thinner, than today.
Mercury’s Surface Composition and Character as Measured by Ground-Based Observations
Mercury's surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations indicate a heterogeneous surface composition with SiO sub(2) content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations. Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe super(0)), or \"iron blebs,\" as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field and the 3:2 spin:orbit coupling. All other points made above are detailed here with an account of the observations, the analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions.
Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update
Launched onboard the BepiColombo Mercury Planetary Orbiter (MPO) in October 2018, the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) is on its way to planet Mercury. MERTIS consists of a push-broom IR-spectrometer (TIS) and a radiometer (TIR), which operate in the wavelength regions of 7-14 μm and 7-40 μm, respectively. This wavelength region is characterized by several diagnostic spectral signatures: the Christiansen feature (CF), Reststrahlen bands (RB), and the Transparency feature (TF), which will allow us to identify and map rock-forming silicates, sulfides as well as other minerals. Thus, the instrument is particularly well-suited to study the mineralogy and composition of the hermean surface at a spatial resolution of about 500 m globally and better than 500 m for approximately 5-10% of the surface. The instrument is fully functional onboard the BepiColombo spacecraft and exceeds all requirements (e.g., mass, power, performance). To prepare for the science phase at Mercury, the team developed an innovative operations plan to maximize the scientific output while at the same time saving spacecraft resources (e.g., data downlink). The upcoming fly-bys will be excellent opportunities to further test and adapt our software and operational procedures. In summary, the team is undertaking action at multiple levels, including performing a comprehensive suite of spectroscopic measurements in our laboratories on relevant analog materials, performing extensive spectral modeling, examining space weathering effects, and modeling the thermal behavior of the hermean surface.
Direct detection of atmospheric atomic bromine leading to mercury and ozone depletion
Bromine atoms play a central role in atmospheric reactive halogen chemistry, depleting ozone and elemental mercury, thereby enhancing deposition of toxic mercury, particularly in the Arctic near-surface troposphere. However, direct bromine atom measurements have been missing to date, due to the lack of analytical capability with sufficient sensitivity for ambient measurements. Here we present direct atmospheric bromine atom measurements, conducted in the springtime Arctic. Measured bromine atom levels reached 14 parts per trillion (ppt, pmol mol−1; 4.2 × 10⁸ atoms per cm−3) and were up to 3–10 times higher than estimates using previous indirect measurements not considering the critical role of molecular bromine. Observed ozone and elemental mercury depletion rates are quantitatively explained by the measured bromine atoms, providing field validation of highly uncertain mercury chemistry. Following complete ozone depletion, elevated bromine concentrations are sustained by photochemical snowpack emissions of molecular bromine and nitrogen oxides, resulting in continued atmospheric mercury depletion. This study provides a breakthrough in quantitatively constraining bromine chemistry in the polar atmosphere, where this chemistry connects the rapidly changing surface to pollutant fate.
Thick ice deposits in shallow simple craters on the Moon and Mercury
Permanently shadowed regions near the poles of Mercury and the Moon may cold-trap water ice for geologic time periods. In past studies, thick ice deposits have been detected on Mercury, but not on the Moon, despite their similar thermal environments. Here we report evidence for thick ice deposits inside permanently shadowed simple craters on both Mercury and the Moon. We measure the depth/diameter ratio of approximately 2,000 simple craters near the north pole of Mercury using Mercury Laser Altimeter data. We find that these craters become distinctly shallower at higher latitudes, where ice is known to have accumulated on their floors. This shallowing corresponds to a maximum infill of around 50 m, consistent with previous estimates. A parallel investigation of approximately 12,000 lunar craters using Lunar Reconnaissance Orbiter data reveals a similar morphological trend near the south pole of the Moon, which we conclude is also due to the presence of thick ice deposits. We find that previously detected surface ice deposits in the south polar region of the Moon are spatially correlated with shallow craters, indicating that the surface ice may be exhumed or linked to the subsurface via diffusion. The family of lunar craters that we identify are promising targets for future missions, and may also help resolve the apparent discrepancy between the abundance of frozen volatiles on Mercury and the Moon.
A proposed global metric to aid mercury pollution policy
The Minamata Convention needs policy-relevant insight The Minamata Convention on Mercury entered into force in August 2017, committing its currently 92 parties to take action to protect human health and the environment from anthropogenic emissions and releases of mercury. But how can we tell whether the convention is achieving its objective? Although the convention requires periodic effectiveness evaluation ( 1 ), scientific uncertainties challenge our ability to trace how mercury policies translate into reduced human and wildlife exposure and impacts. Mercury emissions to air and releases to land and water follow a complex path through the environment before accumulating as methylmercury in fish, mammals, and birds. As these environmental processes are both uncertain and variable, analyzing existing data alone does not currently provide a clear signal of whether policies are effective. A global-scale metric to assess the impact of mercury emissions policies would help parties assess progress toward the convention's goal. Here, I build on the example of the Montreal Protocol on Substances that Deplete the Ozone Layer to identify criteria for a mercury metric. I then summarize why existing mercury data are insufficient and present and discuss a proposed new metric based on mercury emissions to air. Finally, I identify key scientific uncertainties that challenge future effectiveness evaluation.
Geodesy, Geophysics and Fundamental Physics Investigations of the BepiColombo Mission
In preparation for the ESA/JAXA BepiColombo mission to Mercury, thematic working groups had been established for coordinating the activities within the BepiColombo Science Working Team in specific fields. Here we describe the scientific goals of the Geodesy and Geophysics Working Group (GGWG) that aims at addressing fundamental questions regarding Mercury’s internal structure and evolution. This multidisciplinary investigation will also test the gravity laws by using the planet Mercury as a proof mass. The instruments on the Mercury Planetary Orbiter (MPO), which are devoted to accomplishing the GGWG science objectives, include the BepiColombo Laser Altimeter (BELA), the Mercury orbiter radio science experiment (MORE), and the MPO magnetometer (MPO-MAG). The onboard Italian spring accelerometer (ISA) will greatly aid the orbit reconstruction needed by the gravity investigation and laser altimetry. We report the current knowledge on the geophysics, geodesy, and evolution of Mercury after the successful NASA mission MESSENGER and set the prospects for the BepiColombo science investigations based on the latest findings on Mercury’s interior. The MPO spacecraft of the BepiColombo mission will provide extremely accurate measurements of Mercury’s topography, gravity, and magnetic field, extending and improving MESSENGER data coverage, in particular in the southern hemisphere. Furthermore, the dual-spacecraft configuration of the BepiColombo mission with the Mio spacecraft at higher altitudes than the MPO spacecraft will be fundamental for decoupling the internal and external contributions of Mercury’s magnetic field. Thanks to the synergy between the geophysical instrument suite and to the complementary instruments dedicated to the investigations on Mercury’s surface, composition, and environment, the BepiColombo mission is poised to advance our understanding of the interior and evolution of the innermost planet of the solar system.
Rationale for BepiColombo Studies of Mercury’s Surface and Composition
BepiColombo has a larger and in many ways more capable suite of instruments relevant for determination of the topographic, physical, chemical and mineralogical properties of Mercury’s surface than the suite carried by NASA’s MESSENGER spacecraft. Moreover, BepiColombo’s data rate is substantially higher. This equips it to confirm, elaborate upon, and go beyond many of MESSENGER’s remarkable achievements. Furthermore, the geometry of BepiColombo’s orbital science campaign, beginning in 2026, will enable it to make uniformly resolved observations of both northern and southern hemispheres. This will offer more detailed and complete imaging and topographic mapping, element mapping with better sensitivity and improved spatial resolution, and totally new mineralogical mapping. We discuss MESSENGER data in the context of preparing for BepiColombo, and describe the contributions that we expect BepiColombo to make towards increased knowledge and understanding of Mercury’s surface and its composition. Much current work, including analysis of analogue materials, is directed towards better preparing ourselves to understand what BepiColombo might reveal. Some of MESSENGER’s more remarkable observations were obtained under unique or extreme conditions. BepiColombo should be able to confirm the validity of these observations and reveal the extent to which they are representative of the planet as a whole. It will also make new observations to clarify geological processes governing and reflecting crustal origin and evolution. We anticipate that the insights gained into Mercury’s geological history and its current space weathering environment will enable us to better understand the relationships of surface chemistry, morphologies and structures with the composition of crustal types, including the nature and mobility of volatile species. This will enable estimation of the composition of the mantle from which the crust was derived, and lead to tighter constraints on models for Mercury’s origin including the nature and original heliocentric distance of the material from which it formed.
Pore characterization of 3D-printed gypsum rocks: a comprehensive approach
With advancements in additive manufacturing, now 3D-printed core plugs can be duplicated in order to replace natural rock samples. This can help us to control their parameters to be used in different types of experiments for model verifications. However, prior to such substitutions, we should ensure they can represent natural rock samples through characterizing their physical properties. In this paper, synthetic samples made up of gypsum powder are 3D-printed and then characterized for essential pores properties. The analysis included structures of the pores, quantitative porosity evaluation, pore size distribution, pore surface area, pore shape distribution, and corresponding anisotropy. Mercury injection porosimetry (MIP) and helium porosimetry (HP) combined with X-ray micro-computed tomography were performed to provide us with detailed information about the pores. Porosity was measured 32.66% from micro-CT based on watershed thresholding, which was found comparable with MIP and HP results, 27.90 and 28.86%, respectively. Most of the pores lay in the range from 4 to 10 μm in diameter with relative frequency of 92.04%. The pore shape distribution indicates that 3D-printed gypsum rocks host more spherical pores and fewer blade-shaped pores. In addition, pore anisotropy of the sample that was analyzed by collecting pore orientation in orthogonal axes represented the vertical transverse isotropy.