Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Mesenteric arterioles"
Sort by:
Transcriptome analysis of mesenteric arterioles changes and its mechanisms in cirrhotic rats with portal hypertension
Portal hypertension (PHT) is a major cause of liver cirrhosis. The formation of portosystemic collateral vessels and splanchnic vasodilation contribute to the development of hyperdynamic circulation, which in turn aggravates PHT and increases the risk of complications. To investigate the changes in mesenteric arterioles in PHT, cirrhotic rat models were established by ligating the common bile ducts. After 4 weeks, the cirrhotic rats suffered from severe PHT and splanchnic hyperdynamic circulation, characterized by increased portal pressure (PP), cardiac output (CO), cardiac index (CI), and superior mesenteric artery (SMA) flow. Mesenteric arterioles in cirrhotic rats displayed remarkable vasodilation, vascular remodeling, and hypocontractility. RNA sequencing was performed based on these findings. A total of 1,637 differentially expressed genes (DEGs) were detected, with 889 up-regulated and 748 down-regulated genes. Signaling pathways related to vascular changes were enriched, including the vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway, among others. Moreover, the top ten hub genes were screened according to the degree nodes in the protein–protein interaction (PPI) network. Functional enrichment analyses indicated that the hub genes were involved in cell cycle regulation, mitosis, and cellular response to oxidative stress and nitric oxide (NO). In addition, promising candidate drugs for ameliorating PHT, such as resveratrol, were predicted based on hub genes. Taken together, our study highlighted remarkable changes in the mesenteric arterioles of cirrhotic rats with PHT. Transcriptome analyses revealed the potential molecular mechanisms of vascular changes in splanchnic hyperdynamic circulation.
Enhanced expression of Cx43 and gap junction communication in vascular smooth muscle cells of spontaneously hypertensive rats
Niflumic acid (NFA) is a novel gap junction (GJ) inhibitor. The aim of the present study was to investigate the effect of NFA on GJ communication and the expression of connexin (Cx) in vascular smooth muscle cells (VSMCs) of mesenteric arterioles of spontaneously hypertensive rats (SHR). Whole-cell patch clamp recording demonstrated that NFA at 1×10-4 M significantly inhibited the inward current and its effect was reversible. The time for charging and discharging of cell membrane capacitance (Cinput) reduced from 9.73 to 0.48 ms (P<0.05; n=6). Pressure myograph measurement showed that NFA at 3×10-4 M fully neutralized the contraction caused by phenylephrine. The relaxation responses of normotensive control Wistar Kyoto (WKY) rats were significantly higher, compared with those of the SHRs (P<0.05; n=6). Western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the mRNA and protein expression levels of Cx43 of the third-level branch of mesenteric arterioles of the SHRs and WKY rats were higher, compared with those of the first-level branch. The mRNA and protein expression levels of Cx43 of the primary and third-level branches of the mesenteric arterioles in the SHRs were higher, compared with those in the WKY rats (P<0.05; n=6). The mRNA levels of Cx43 in the mesenteric arterioles were significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). The protein levels of Cx43 in primary cultured VSMCs isolated from the mesenteric arterioles were also significantly downregulated by NFA in a concentration-dependent manner (P<0.01; n=6). These results showed that the vasorelaxatory effects of GJ inhibitors were reduced in the SHRs, which was associated with a higher protein expression level of Cx43 in the mesenteric arterioles of the SHRs. NFA also relaxed the mesenteric arterioles by reducing the expression of Cx43, which decreased blood pressure. Therefore, regulation of the expression of GJs may be a therapeutic target for the treatment of hypertension.
The ability of baroreflex activation to improve blood pressure and resistance vessel function in spontaneously hypertensive rats is dependent on stimulation parameters
Baroreflex activation by electric stimulation of the carotid sinus (CS) effectively lowers blood pressure. However, the degree to which differences between stimulation protocols impinge on cardiovascular outcomes has not been defined. To address this, we examined the effects of short- and long-duration (SD and LD) CS stimulation on hemodynamic and vascular function in spontaneously hypertensive rats (SHRs). We fit animals with miniature electrical stimulators coupled to electrodes positioned around the left CS nerve that delivered intermittent 5/25 s ON/OFF (SD) or 20/20 s ON/OFF (LD) square pulses (1 ms, 3 V, 30 Hz) continuously applied for 48 h in conscious animals. A sham-operated control group was also studied. We measured mean arterial pressure (MAP), systolic blood pressure variability (SBPV), heart rate (HR), and heart rate variability (HRV) for 60 min before stimulation, 24 h into the protocol, and 60 min after stimulation had stopped. SD stimulation reversibly lowered MAP and HR during stimulation. LD stimulation evoked a decrease in MAP that was sustained even after stimulation was stopped. Neither SD nor LD had any effect on SBPV or HRV when recorded after stimulation, indicating no adaptation in autonomic activity. Both the contractile response to phenylephrine and the relaxation response to acetylcholine were increased in mesenteric resistance vessels isolated from LD-stimulated rats only. In conclusion, the ability of baroreflex activation to modulate hemodynamics and induce lasting vascular adaptation is critically dependent on the electrical parameters and duration of CS stimulation.
Propofol-induced vasodilation of mesenteric arterioles via BKCa channel and gap junction
The present study aimed to investigate the role of propofol in mediating the vasomotor activity of the mesenteric arteriole (MA) of Sprague Dawley (SD) rats, and to elucidate the underlying mechanisms. The pressure myograph technique was used to examine the effect of different concentrations of propofol on the relaxation of blood vessels in the 2-3 mm MA segments freshly separated from the SD rats. The whole-cell patch-clamp technique was applied to observe the outward current of single vascular smooth muscle cells (VSMCs) obtained from the MAs of the SD rats. Furthermore, immunofluorescence was utilized to assess the expression of connexin (Cx) in the MAs of SD rats. The results indicated the following: i) Propofol relaxed the MA of SD rats in a concentration-dependent manner from 1×10−7 to 3×10−4 mol/l; ii) in the acutely dissociated VSMCs, propofol (1×10−7 to 3×10−4 mol/l) enhanced the outward current of VSMCs in a concentration-dependent manner; iii) the enhanced outward currents induced by propofol (1×10−5 mol/l) may be reversed by tetraethylammonium (TEA; 1 mmol/l), a calcium-activated K+ channel inhibitor; iv) the effect of propofol on the relaxation of the vasculature wAS reduced after perfusion with 1 mmol/l TEA; v) Cx40, Cx43 and Cx45 were expressed on the MA; 6) 18β-glycyrrhetintic acid and 2-aminoethoxydiphenyl borate, two types of gap junction blocker, inhibited the propofol-induced relaxation. The present study provides evidence that propofol relaxes the MA, which may be associated with its effect of enhancing the channel current of large-conductance calcium voltage-activated potassium channels, contributing to the K+ outflow and leading to VSMC hyperpolarization; the gap junction may facilitate the hyperpolarization, which may lead to vascular synchronized relaxation and thereby reduce the blood pressure.
Contribution of nitric oxide produced by inducible nitric oxide synthase to vascular responses of mesenteric arterioles in streptozotocin‐diabetic rats
The functional changes in mesenteric arterioles of streptozotocin‐induced diabetes were investigated by intravital microscopy. The mesentery was exteriorized from anesthetized rats, spread in a chamber, and superfused with Tyrode solution. All drugs tested were applied to the superfusing Tyrode solution. Compared with age‐matched controls, the diabetic rats showed enhanced vascular sensitivity to phenylephrine, an α1‐adrenoceptor agonist. The preincubation of the mesentery with NG‐nitro‐L‐arginine (L‐NNA), a nitric oxide synthase (NOS) inhibitor, shifted the phenylephrine‐concentration–response curves to the left in both the diabetic and control rats. Even in the presence of L‐NNA, the sensitivity to phenylephrine was higher in the diabetic rats than in the control. Acetylcholine relaxed the mesenteric arterioles in both groups, but to a significantly greater extent in the control than in the diabetic rats. However, the L‐NNA‐induced constriction of arterioles did not differ significantly between the groups. In contrast, the amplitude of the constrictions of mesenteric arterioles induced by S‐ethylisothiourea, an inducible NOS (iNOS) inhibitor, was significantly greater in the diabetic rats than in the control. Immunostaining of the mesentery with a specific antibody for iNOS revealed iNOS in the microvessels of only the diabetic rats. These results suggest that constrictor responses to α1‐adrenoceptor stimulation are sensitized in the mesenteric arterioles of STZ‐diabetic rats, and that iNOS expressed in the arteriolar smooth muscle plays a role in suppressing the basal tone and the reactivity of the arterioles in STZ‐diabetic rats. British Journal of Pharmacology (2004) 141, 269–276. doi:10.1038/sj.bjp.0705611
Effect of Glycine on the Microcirculation in Rat Mesenteric Vessels
Model experiments on biomicroscopy of mesenteric microvessels in laboratory rats were performed to evaluate the effect of natural metabolites (e.g., amino acid glycine) on the microcirculation. The effect of glycine was determined from a change in the diameter of arterioles. Application of glycine (0.1 ml, 1 M) to the mesenteric surface was followed by arteriolar dilation (by 50-80%). Histamine-induced disturbances in the microcirculation were not observed after preapplication of glycine. Under these conditions, pretreatment with histamine was accompanied by reversible changes. Our results suggest that the natural metabolite glycine has a prophylactic and therapeutic effect on microcirculatory disturbances, which are induced by inflammatory-and-allergic mediator histamine.
Disruption of vascular Ca2+-activated chloride currents lowers blood pressure
High blood pressure is the leading risk factor for death worldwide. One of the hallmarks is a rise of peripheral vascular resistance, which largely depends on arteriole tone. Ca2+-activated chloride currents (CaCCs) in vascular smooth muscle cells (VSMCs) are candidates for increasing vascular contractility. We analyzed the vascular tree and identified substantial CaCCs in VSMCs of the aorta and carotid arteries. CaCCs were small or absent in VSMCs of medium-sized vessels such as mesenteric arteries and larger retinal arterioles. In small vessels of the retina, brain, and skeletal muscle, where contractile intermediate cells or pericytes gradually replace VSMCs, CaCCs were particularly large. Targeted disruption of the calcium-activated chloride channel TMEM16A, also known as ANO1, in VSMCs, intermediate cells, and pericytes eliminated CaCCs in all vessels studied. Mice lacking vascular TMEM16A had lower systemic blood pressure and a decreased hypertensive response following vasoconstrictor treatment. There was no difference in contractility of medium-sized mesenteric arteries; however, responsiveness of the aorta and small retinal arterioles to the vasoconstriction-inducing drug U46619 was reduced. TMEM16A also was required for peripheral blood vessel contractility, as the response to U46619 was attenuated in isolated perfused hind limbs from mutant mice. Out data suggest that TMEM16A plays a general role in arteriolar and capillary blood flow and is a promising target for the treatment of hypertension.
Pulmonary Cerium Dioxide Nanoparticle Exposure Differentially Impairs Coronary and Mesenteric Arteriolar Reactivity
Cerium dioxide nanoparticles (CeO 2 NPs) are an engineered nanomaterial (ENM) that possesses unique catalytic, oxidative, and reductive properties. Currently, CeO 2 NPs are being used as a fuel catalyst but these properties are also utilized in the development of potential drug treatments for radiation and stroke protection. These uses of CeO 2 NPs present a risk for human exposure; however, to date, no studies have investigated the effects of CeO 2 NPs on the microcirculation following pulmonary exposure. Previous studies in our laboratory with other nanomaterials have shown impairments in normal microvascular function after pulmonary exposures. Therefore, we predicted that CeO 2 NP exposure would cause microvascular dysfunction that is dependent on the tissue bed and dose. Twenty-four-hour post-exposure to CeO 2 NPs (0–400 μg), mesenteric, and coronary arterioles was isolated and microvascular function was assessed. Our results provided evidence that pulmonary CeO 2 NP exposure impairs endothelium-dependent and endothelium-independent arteriolar dilation in a dose-dependent manner. The CeO 2 NP exposure dose which causes a 50 % impairment in arteriolar function (EC 50 ) was calculated and ranged from 15 to 100 μg depending on the chemical agonist and microvascular bed. Microvascular assessments with acetylcholine revealed a 33–75 % reduction in function following exposure. Additionally, there was a greater sensitivity to CeO 2 NP exposure in the mesenteric microvasculature due to the 40 % decrease in the calculated EC 50 compared to the coronary microvasculature EC 50 . CeO 2 NP exposure increased mean arterial pressure in some groups. Taken together, these observed microvascular changes may likely have detrimental effects on local blood flow regulation and contribute to cardiovascular dysfunction associated with particle exposure.
Stimulation history affects vasomotor responses in rat mesenteric arterioles
Resistance vessels regulate blood flow by continuously adjusting activity of the wall smooth muscle cells. These cells integrate a variety of stimuli from blood, endothelium, autonomic nerves, and surrounding tissues. Each stimulus elicits an intracellular signaling cascade that eventually influences activation of the contractile machinery. The characteristic time scale of each cascade and the sharing of specific reactions between cascades provide for complex behavior when a vessel receives multiple stimuli. Here, we apply sequential stimulation with invariant concentrations of vasoconstrictor (norepinephrine/methoxamine) and vasodilator (SNAP/carbacol) to rat mesenteric vessels in the wire myograph to show that (1) time elapsed between addition of two vasoactive drugs and (2) the sequence of addition may significantly affect final force development. Furthermore, force oscillations (vasomotion) often appear upon norepinephrine administration. Using computational modeling in combination with nitric oxide (NO) inhibition/NO addition experiments, we show that (3) amplitude and number of oscillating vessels increase over time, (4) the ability of NO to induce vasomotion depends on whether it is applied before or after norepinephrine, and (5) emergence of vasomotion depends on the prior dynamical state of the system; in simulations, this phenomenon appears as “hysteresis.” These findings underscore the time-dependent nature of vascular tone generation which must be considered when evaluating the vasomotor effects of multiple, simultaneous stimuli in vitro or in vivo.
Fluid shear stress regulates placental growth factor expression via heme oxygenase 1 and iron
Increased fluid shear stress (FSS) is a key initiating stimulus for arteriogenesis, the outward remodeling of collateral arterioles in response to upstream occlusion. Placental growth factor (PLGF) is an important arteriogenic mediator. We previously showed that elevated FSS increases PLGF in a reactive oxygen species (ROS)-dependent fashion both in vitro and ex vivo. Heme oxygenase 1 (HO-1) is a cytoprotective enzyme that is upregulated by stress and has arteriogenic effects. In the current study, we used isolated murine mesentery arterioles and co-cultures of human coronary artery endothelial cells (EC) and smooth muscle cells (SMC) to test the hypothesis that HO-1 mediates the effects of FSS on PLGF. HO-1 mRNA was increased by conditions of increased flow and shear stress in both co-cultures and vessels. Both inhibition of HO-1 with zinc protoporphyrin and HO-1 knockdown abolished the effect of FSS on PLGF. Conversely, induction of HO-1 activity increased PLGF. To determine which HO-1 product upregulates PLGF, co-cultures were treated with a CO donor (CORM-A1), biliverdin, ferric ammonium citrate (FAC), or iron-nitrilotriacetic acid (iron-NTA). Of these FAC and iron-NTA induced an increase PLGF expression. This study demonstrates that FSS acts through iron to induce pro-arteriogenic PLGF, suggesting iron supplementation as a novel potential treatment for revascularization.