Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
147,609 result(s) for "Meta-analysis."
Sort by:
The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses
Context: Currently, most systematic reviews and meta-analyses are done retrospectively with fragmented published information. This article aims to explore the growth of published systematic reviews and meta-analyses and to estimate how often they are redundant, misleading, or serving conflicted interests. Methods: Data included information from PubMed surveys and from empirical evaluations of meta-analyses. Findings: Publication of systematic reviews and meta-analyses has increased rapidly. In the period January 1, 1986, to December 4, 2015, PubMed tags 266,782 items as \"systematic reviews\" and 58,611 as \"meta-analyses.\" Annual publications between 1991 and 2014 increased 2,728% for systematic reviews and 2,635% for meta-analyses versus only 153% for all PubMed-indexed items. Currently, probably more systematic reviews of trials than new randomized trials are published annually. Most topics addressed by meta-analyses of randomized trials have overlapping, redundant meta-analyses; same-topic meta-analyses may exceed 20 sometimes. Some fields produce massive numbers of meta-analyses; for example, 185 meta-analyses of antidepressants for depression were published between 2007 and 2014. These meta-analyses are often produced either by industry employees or by authors with industry ties and results are aligned with sponsor interests. China has rapidly become the most prolific producer of English-language, PubMed-indexed meta-analyses. The most massive presence of Chinese meta-analyses is on genetic associations (63% of global production in 2014), where almost all results are misleading since they combine fragmented information from mostly abandoned era of candidate genes. Furthermore, many contracting companies working on evidence synthesis receive industry contracts to produce meta-analyses, many of which probably remain unpublished. Many other meta-analyses have serious flaws. Of the remaining, most have weak or insufficient evidence to inform decision making. Few systematic reviews and meta-analyses are both non-misleading and useful. Conclusions: The production of systematic reviews and meta-analyses has reached epidemic proportions. Possibly, the large majority of produced systematic reviews and meta-analyses are unnecessary, misleading, and/or conflicted.
A Guide to Conducting a Meta-Analysis with Non-Independent Effect Sizes
Conventional meta-analytic procedures assume that effect sizes are independent. When effect sizes are not independent, conclusions based on these conventional procedures can be misleading or even wrong. Traditional approaches, such as averaging the effect sizes and selecting one effect size per study, are usually used to avoid the dependence of the effect sizes. These ad-hoc approaches, however, may lead to missed opportunities to utilize all available data to address the relevant research questions. Both multivariate meta-analysis and three-level meta-analysis have been proposed to handle non-independent effect sizes. This paper gives a brief introduction to these new techniques for applied researchers. The first objective is to highlight the benefits of using these methods to address non-independent effect sizes. The second objective is to illustrate how to apply these techniques with real data in R and Mplus. Researchers may modify the sample R and Mplus code to fit their data.