Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,491
result(s) for
"Metabòlits"
Sort by:
Validation of biomarkers of food intake—critical assessment of candidate biomarkers
by
Dragsted, L. O.
,
Afman, L. A.
,
Scalbert, A.
in
Assessment of food intake
,
Bioavailability
,
Biochemical markers
2018
Biomarkers of food intake (BFIs) are a promising tool for limiting misclassification in nutrition research where more subjective dietary assessment instruments are used. They may also be used to assess compliance to dietary guidelines or to a dietary intervention. Biomarkers therefore hold promise for direct and objective measurement of food intake. However, the number of comprehensively validated biomarkers of food intake is limited to just a few. Many new candidate biomarkers emerge from metabolic profiling studies and from advances in food chemistry. Furthermore, candidate food intake biomarkers may also be identified based on extensive literature reviews such as described in the guidelines for Biomarker of Food Intake Reviews (BFIRev). To systematically and critically assess the validity of candidate biomarkers of food intake, it is necessary to outline and streamline an optimal and reproducible validation process. A consensus-based procedure was used to provide and evaluate a set of the most important criteria for systematic validation of BFIs. As a result, a validation procedure was developed including eight criteria, plausibility, dose-response, time-response, robustness, reliability, stability, analytical performance, and inter-laboratory reproducibility. The validation has a dual purpose: (1) to estimate the current level of validation of candidate biomarkers of food intake based on an objective and systematic approach and (2) to pinpoint which additional studies are needed to provide full validation of each candidate biomarker of food intake. This position paper on biomarker of food intake validation outlines the second step of the BFIRev procedure but may also be used as such for validation of new candidate biomarkers identified, e.g., in food metabolomic studies.
Journal Article
Urine metabolome profiling of immune-mediated inflammatory diseases
by
Fernández-Nebro, Antonio
,
Puig, Lluís
,
Nos, Pilar
in
Analysis
,
Arthritis
,
Arthritis, Rheumatoid - metabolism
2016
Background
Immune-mediated inflammatory diseases (IMIDs) are a group of complex and prevalent diseases where disease diagnostic and activity monitoring is highly challenging. The determination of the metabolite profiles of biological samples is becoming a powerful approach to identify new biomarkers of clinical utility. In order to identify new metabolite biomarkers of diagnosis and disease activity, we have performed the first large-scale profiling of the urine metabolome of the six most prevalent IMIDs: rheumatoid arthritis, psoriatic arthritis, psoriasis, systemic lupus erythematosus, Crohn’s disease, and ulcerative colitis.
Methods
Using nuclear magnetic resonance, we analyzed the urine metabolome in a discovery cohort of 1210 patients and 100 controls. Within each IMID, two patient subgroups were recruited representing extreme disease activity (very high vs. very low). Metabolite association analysis with disease diagnosis and disease activity was performed using multivariate linear regression in order to control for the effects of clinical, epidemiological, or technical variability. After multiple test correction, the most significant metabolite biomarkers were validated in an independent cohort of 1200 patients and 200 controls.
Results
In the discovery cohort, we identified 28 significant associations between urine metabolite levels and disease diagnosis and three significant metabolite associations with disease activity (
P
FDR
< 0.05). Using the validation cohort, we validated 26 of the diagnostic associations and all three metabolite associations with disease activity (
P
FDR
< 0.05). Combining all diagnostic biomarkers using multivariate classifiers we obtained a good disease prediction accuracy in all IMIDs and particularly high in inflammatory bowel diseases. Several of the associated metabolites were found to be commonly altered in multiple IMIDs, some of which can be considered as hub biomarkers. The analysis of the metabolic reactions connecting the IMID-associated metabolites showed an over-representation of citric acid cycle, phenylalanine, and glycine-serine metabolism pathways.
Conclusions
This study shows that urine is a source of biomarkers of clinical utility in IMIDs. We have found that IMIDs show similar metabolic changes, particularly between clinically similar diseases and we have found, for the first time, the presence of hub metabolites. These findings represent an important step in the development of more efficient and less invasive diagnostic and disease monitoring methods in IMIDs.
Journal Article
Energy Metabolism during Repeated Sets of Leg Press Exercise Leading to Failure or Not
by
Ibañez, Javier
,
Izquierdo, Mikel
,
Gorostiaga, Esteban M.
in
Adult
,
Biology
,
Biomechanical Phenomena - physiology
2012
This investigation examined the influence of the number of repetitions per set on power output and muscle metabolism during leg press exercise. Six trained men (age 34 ± 6 yr) randomly performed either 5 sets of 10 repetitions (10REP), or 10 sets of 5 repetitions (5REP) of bilateral leg press exercise, with the same initial load and rest intervals between sets. Muscle biopsies (vastus lateralis) were taken before the first set, and after the first and the final sets. Compared with 5REP, 10REP resulted in a markedly greater decrease (P<0.05) of the power output, muscle PCr and ATP content, and markedly higher (P<0.05) levels of muscle lactate and IMP. Significant correlations (P<0.01) were observed between changes in muscle PCr and muscle lactate (R(2) = 0.46), between changes in muscle PCr and IMP (R(2) = 0.44) as well as between changes in power output and changes in muscle ATP (R(2) = 0.59) and lactate (R(2) = 0.64) levels. Reducing the number of repetitions per set by 50% causes a lower disruption to the energy balance in the muscle. The correlations suggest that the changes in PCr and muscle lactate mainly occur simultaneously during exercise, whereas IMP only accumulates when PCr levels are low. The decrease in ATP stores may contribute to fatigue.
Journal Article
Metabolic profiling and targeted lipidomics reveals a disturbed lipid profile in mothers and fetuses with intrauterine growth restriction
2018
Fetal growth may be impaired by poor placental function or maternal conditions, each of which can influence the transfer of nutrients and oxygen from the mother to the developing fetus. Large-scale studies of metabolites (metabolomics) are key to understand cellular metabolism and pathophysiology of human conditions. Herein, maternal and cord blood plasma samples were used for NMR-based metabolic fingerprinting and profiling, including analysis of the enrichment of circulating lipid classes and subclasses, as well as the number of sub-fraction particles and their size. Changes in phosphatidylcholines and glycoproteins were prominent in growth-restricted fetuses indicating significant alterations in their abundance and biophysical properties. Lipoprotein profiles showed significantly lower plasma concentrations of cholesterol-intermediate density lipoprotein (IDL), triglycerides-IDL and high-density lipoprotein (HDL) in mothers of growth-restricted fetuses compared to controls (p < 0.05). In contrast, growth-restricted fetuses had significantly higher plasma concentrations of cholesterol and triglycerides transporting lipoproteins [LDL, IDL, and VLDL, (p < 0.005; all)], as well as increased VLDL particle types (large, medium and small). Significant changes in plasma concentrations of formate, histidine, isoleucine and citrate in growth-restricted fetuses were also observed. Comprehensive metabolic profiling reveals that both, mother and fetuses of pregnancies complicated with fetal growth restriction have a substantial disruption in lipid metabolism.
Journal Article
Null diffusion-based enrichment for metabolomics data
by
Fernández-Albert, Francesc
,
Perera-Lluna, Alexandre
,
Yanes, Oscar
in
Analysis
,
Aplicacions de la informàtica
,
Bioengineering
2017
Metabolomics experiments identify metabolites whose abundance varies as the conditions under study change. Pathway enrichment tools help in the identification of key metabolic processes and in building a plausible biological explanation for these variations. Although several methods are available for pathway enrichment using experimental evidence, metabolomics does not yet have a comprehensive overview in a network layout at multiple molecular levels. We propose a novel pathway enrichment procedure for analysing summary metabolomics data based on sub-network analysis in a graph representation of a reference database. Relevant entries are extracted from the database according to statistical measures over a null diffusive process that accounts for network topology and pathway crosstalk. Entries are reported as a sub-pathway network, including not only pathways, but also modules, enzymes, reactions and possibly other compound candidates for further analyses. This provides a richer biological context, suitable for generating new study hypotheses and potential enzymatic targets. Using this method, we report results from cells depleted for an uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG as a knowledge base. Partial validation is provided with NMR-based tracking of 13C glucose labelling of these cells.
Journal Article
New Biochemical Insights into the Mechanisms of Pulmonary Arterial Hypertension in Humans
by
Peinado, Victor Ivo
,
Barberá, Joan Albert
,
Blanco, Isabel
in
Adult
,
Amino acids
,
Biology and Life Sciences
2016
Diagnosis of pulmonary arterial hypertension (PAH) is difficult due to the lack of specific clinical symptoms and biomarkers, especially at early stages. We compared plasma metabolic fingerprints of PAH patients (n = 20) with matched healthy volunteers (n = 20) using, for the first time, untargeted multiplatform metabolomics approach consisting of high-performance liquid and gas chromatography coupled with mass spectrometry. Multivariate statistical analyses were performed to select metabolites that contribute most to groups' classification (21 from liquid in both ionization modes and 9 from gas chromatography-mass spectrometry). We found metabolites related to energy imbalance, such as glycolysis-derived metabolites, as well as metabolites involved in fatty acid, lipid and amino acid metabolism. We observed statistically significant changes in threitol and aminomalonic acid in PAH patients, which could provide new biochemical insights into the pathogenesis of the disease. The results were externally validated on independent case and control cohorts, confirming up to 16 metabolites as statistically significant in the validation study. Multiplatform metabolomics, followed by multivariate chemometric data analysis has a huge potential for explaining pathogenesis of PAH and for searching potential and new more specific and less invasive markers of the disease.
Journal Article
Biomarkers of food intake for cocoa and liquorice (products): a systematic review
by
Afman, Lydia A
,
Urpí Sardà, Mireia
,
Michielsen, Charlotte C. J. R
in
Biochemical markers
,
Biomarkers
,
Biomedical and Life Sciences
2018
Background: To unravel true links between diet and health, it is important that dietary exposure is accurately measured. Currently, mainly self-reporting methods (e.g. food frequency questionnaires and 24-h recalls) are used to assess food intake in epidemiological studies. However, these traditional instruments are subjective measures and contain well-known biases. Especially, estimating the intake of the group of confectionary products, such as products containing cocoa and liquorice, remains a challenge. The use biomarkers of food intake (BFIs) may provide a more objective measurement. However, an overview of current candidate biomarkers and their validity is missing for both cocoa- and liquorice-containing foods. Objective: The purpose of the current study was to (1) identify currently described candidate BFIs for cocoa (products) and liquorice, (2) to evaluate the validity of these identified candidate BFIs and (3) to address further validation and/or identification work to be done. Methods: This systematic review was based on a comprehensive literature search of three databases (PubMed, Scopus and ISI web of Science), to identify candidate BFIs. Via a second search step in the Human Metabolome Database (HMDB), the Food Database (FooDB) and Phenol-Explorer, the specificity of the candidate BFIs was evaluated, followed by an evaluation of the validity of the specific candidate BFIs, via pre-defined criteria. Results: In total, 37 papers were included for cocoa and 8 papers for liquorice. For cocoa, 164 unique candidate BFIs were obtained, and for liquorice, four were identified in total. Despite the high number of identified BFIs for cocoa, none of the metabolites was specific. Therefore, the validity of these compounds was not further examined. For liquorice intake, 18-glycyrrhetinic acid (18-GA) was found to have the highest assumed validity. Conclusions: For cocoa, specific BFIs were missing, mainly because the individual BFIs were also found in foods having a similar composition, such as tea (polyphenols) or coffee (caffeine). However, a combination of individual BFIs might lead to discriminating profiles between cocoa (products) and foods with a similar composition. Therefore, studies directly comparing the consumption of cocoa to these similar products are needed, enabling efforts to find a unique profile per product. For liquorice, we identified 18-GA as a promising BFI; however, important information on its validity is missing; thus, more research is necessary. Our findings indicate a need for more studies to determine acceptable BFIs for both cocoa and liquorice. Keywords: Licorice, Liquorice, Cocoa, Cacao, Chocolate, Metabolites, Metabolomics, Biomarkers
Journal Article
A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats
by
Ramos-Romero, Sara
,
Medina, Isabel
,
Molinar-Toribio, Eunice
in
Catechin
,
High fat diet
,
High-performance liquid chromatography
2018
PurposePolyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE).MethodsAdult female Wistar–Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC–MS/MS analysis.ResultsA lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed.ConclusionsThese results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes.
Journal Article
Nutrimetabolomics fingerprinting to identify biomarkers of bread exposure in a free-living population from the PREDIMED study cohort
by
Estruch Riba, Ramon
,
Martínez-González, Miguel Ángel, 1957
,
Llorach, Rafael
in
Biochemical markers
,
Biochemistry
,
Biomedical and Life Sciences
2015
Bread is one of the most widely consumed foods. Its impact on human health is currently of special interest for researchers. We aimed to identify biomarkers of bread consumption by applying a nutrimetabolomic approach to a free-living population. An untargeted HPLC q-TOF-MS and multivariate analysis was applied to human urine from 155 subjects stratified by habitual bread consumption in three groups: non-consumers of bread (n = 56), white-bread consumers (n = 48) and whole-grain bread consumers (n = 51). The most differential metabolites (variable importance for projection ≥1.5) included compounds originating from cereal plant phytochemicals such as benzoxazinoids and alkylresorcinol metabolites, and compounds produced by gut microbiota (such as enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). Pyrraline, riboflavin, 3-indolecarboxylic acid glucuronide, 2,8-dihydroxyquinoline glucuronide and N-α-acetylcitrulline were also tentatively identified. In order to combine multiple metabolites in a model to predict bread consumption, a stepwise logistic regression analysis was used. Receiver operating curves were constructed to evaluate the global performance of individual metabolites and their combination. The area under the curve values [AUC (95 % CI)] of combined models ranged from 77.8 % (69.1 86.4 %) to 93.7 % (89.4 98.1 %), whereas the AUC for the metabolites included in the models had weak values when they were evaluated individually: from 58.1 % (46.6 69.7 %) to 78.4 % (69.8 87.1 %). Our study showed that a daily bread intake significantly impacted on the urinary metabolome, despite being examined under uncontrolled free-living conditions. We further concluded that a combination of several biomarkers of exposure is better than a single biomarker for the predictive ability of discriminative analysis.
Journal Article
Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples
by
Estruch Riba, Ramon
,
Martínez Huélamo, Miriam
,
Vallverdú i Queralt, Anna
in
Acids
,
Adult
,
Biologia humana
2015
An UHPLC-MS/MS method for the quantification of tomato phenolic metabolites in human fluids was optimized and validated, and then applied in a pilot dietary intervention study with healthy volunteers. A 5-fold gain in speed (3.5 min of total run); 7-fold increase in MS sensitivity and 2-fold greater efficiency (50% peak width reduction) were observed when comparing the proposed method with the reference-quality HPLC-MS/MS system, whose assay performance has been previously documented. The UHPLC-MS/MS method led to an overall improvement in the limits of detection (LOD) and quantification (LOQ) for all the phenolic compounds studied. The recoveries ranged between 68% and 100% in urine and 61% and 100% in plasma. The accuracy; intra- and interday precision; and stability met with the acceptance criteria of the AOAC International norms. Due to the improvements in the analytical method; the total phenolic metabolites detected in plasma and urine in the pilot intervention study were 3 times higher than those detected by HPLC-MS/MS. Comparing with traditional methods; which require longer time of analysis; the methodology described is suitable for the analysis of phenolic compounds in a large number of plasma and urine samples in a reduced time frame.
Journal Article