Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
698 result(s) for "Metal Nanoparticles - radiation effects"
Sort by:
Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study
Biocompatible gold nanoparticles designed to absorb light at wave-lengths of high tissue transparency have been of particular interest for biomedical applications. The ability of such nanoparticles to convert absorbed near-infrared light to heat and induce highly localized hyperthermia has been shown to be highly effective for photothermal cancer therapy, resulting in cell death and tumor remission in a multitude of preclinical animal models. Here we report the initial results of a clinical trial in which laser-excited gold-silica nanoshells (GSNs) were used in combination with magnetic resonance–ultrasound fusion imaging to focally ablate low-intermediate-grade tumors within the prostate. The overall goal is to provide highly localized regional control of prostate cancer that also results in greatly reduced patient morbidity and improved functional outcomes. This pilot device study reports feasibility and safety data from 16 cases of patients diagnosed with low- or intermediate-risk localized prostate cancer. After GSN infusion and high-precision laser ablation, patients underwent multiparametric MRI of the prostate at 48 to 72 h, followed by postprocedure mpMRI/ultrasound targeted fusion biopsies at 3 and 12 mo, as well as a standard 12-core systematic biopsy at 12 mo. GSN-mediated focal laser ablation was successfully achieved in 94% (15/16) of patients, with no significant difference in International Prostate Symptom Score or Sexual Health Inventory for Men observed after treatment. This treatment protocol appears to be feasible and safe in men with low- or intermediate-risk localized prostate cancer without serious complications or deleterious changes in genitourinary function.
Controlled-reflectance surfaces with film-coupled colloidal nanoantennas
Randomly adsorbing chemically synthesized silver nanocubes, each of which is the optical analogue of a grounded patch antenna, onto a nanoscale-thick polymer spacer layer on a gold film results in a metamaterial surface with a reflectance spectrum that can be tailored by varying the geometry. Nanocube antennas In many photonic applications ranging from sensors to energy-harvesting devices, a perfectly absorbing material is desired. Previously, perfect absorbers of infrared or visible light have been made by using lithography to create patterned structures on metallic surfaces, but this approach is expensive and difficult to scale up. Antoine Moreau et al . have developed an attractively simple method, in which silver nanocubes produced by wet chemistry are randomly distributed across a polymer-coated gold surface. Each cube acts as a nanoantenna to counter the reflectance of the metal surface. These cubes are simple and cheap to produce and can be easily spread and attached to the surface, so that large areas can be covered. They provide a means of controlling the colour of the reflected light, and the efficient optical response of the cubes suggests that mixed cube populations with controlled sized dispersion could be used to adjust the absorption at will. Efficient and tunable absorption is essential for a variety of applications, such as designing controlled-emissivity surfaces for thermophotovoltaic devices 1 , tailoring an infrared spectrum for controlled thermal dissipation 2 and producing detector elements for imaging 3 . Metamaterials based on metallic elements are particularly efficient as absorbing media, because both the electrical and the magnetic properties of a metamaterial can be tuned by structured design 4 . So far, metamaterial absorbers in the infrared or visible range have been fabricated using lithographically patterned metallic structures 2 , 5 , 6 , 7 , 8 , 9 , making them inherently difficult to produce over large areas and hence reducing their applicability. Here we demonstrate a simple method to create a metamaterial absorber by randomly adsorbing chemically synthesized silver nanocubes onto a nanoscale-thick polymer spacer layer on a gold film, making no effort to control the spatial arrangement of the cubes on the film. We show that the film-coupled nanocubes provide a reflectance spectrum that can be tailored by varying the geometry (the size of the cubes and/or the thickness of the spacer). Each nanocube is the optical analogue of a grounded patch antenna, with a nearly identical local field structure that is modified by the plasmonic response of the metal’s dielectric function, and with an anomalously large absorption efficiency that can be partly attributed to an interferometric effect 10 . The absorptivity of large surface areas can be controlled using this method, at scales out of reach of lithographic approaches (such as electron-beam lithography) that are otherwise required to manipulate matter on the nanoscale.
Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods
The development of sustainable methods for the degradation of pollutants in water is an ongoing critical challenge. Anthropogenic organic micropollutants such as pharmaceuticals, present in our water supplies in trace quantities, are currently not remediated by conventional treatment processes. Here, we report an initial demonstration of the oxidative degradation of organic micropollutants using specially designed nanoparticles and visible-wavelength sunlight. Gold “Janus” nanorods (Au JNRs), partially coated with silica to enhance their colloidal stability in aqueous solutions while also maintaining a partially uncoated Au surface to facilitate photocatalysis, were synthesized. Au JNRs were dispersed in an aqueous solution containing peroxydisulfate (PDS), where oxidative degradation of both simulant and actual organic micropollutants was observed. Photothermal heating, light-induced hot electron-driven charge transfer, and direct electron shuttling under dark conditions all contribute to the observed oxidation chemistry. This work not only provides an ideal platform for studying plasmonic photochemistry in aqueous medium but also opens the door for nanoengineered, solar-based methods to remediate recalcitrant micropollutants in water supplies.
Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation
Liposomes have been well established as an effective drug delivery system, due to simplicity of their preparation and unique characteristics. However conventional liposomes are unsuitable for the on-demand content release, which limits their therapeutic utility. Here we report X-ray-triggerable liposomes incorporating gold nanoparticles and photosensitizer verteporfin. The 6 MeV X-ray radiation induces verteporfin to produce singlet oxygen, which destabilises the liposomal membrane and causes the release of cargos from the liposomal cavity. This triggering strategy is demonstrated by the efficiency of gene silencing in vitro and increased effectiveness of chemotherapy in vivo. Our work indicates the feasibility of a combinatorial treatment and possible synergistic effects in the course of standard radiotherapy combined with chemotherapy delivered via X-ray-triggered liposomes. Importantly, our X-ray-mediated liposome release strategy offers prospects for deep tissue photodynamic therapy, by removing its depth limitation. X-ray radiation has excellent tissue penetration depth, making it a useful trigger for deep tissue cancer therapy. Here, the authors design X-ray triggered drug/gene-loaded liposomes by embedding photosensitizers and gold nanoparticles in the liposome bilayer, and demonstrate their efficacy in cancer and gene therapy.
Intratumoral generation of photothermal gold nanoparticles through a vectorized biomineralization of ionic gold
Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold. We have characterized this process for intracellular gold nanoparticle formation, which progressively accumulates proteins as the ionic gold clusters migrate to the nucleus. This nano-vectorized application of ionic gold emphasizes its potential biomedical opportunities while reducing the quantity of ionic gold and required incubation time. To demonstrate its biomedical potential, we further induce in-situ biosynthesis of gold nanoparticles within MCF7 tumor mouse xenografts which is followed by its photothermal remediation. Intracellular generation of gold nanoparticles has drawn attention but toxic effects have limited potential applications. Here, the authors report on the delivery of ionic gold with PEG resulting in faster synthesis and reduced toxicity due to lower concentrations of ionic gold required and explore potential applications.
Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine
Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO 3 ) 2 •4H 2 O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.
Morphology-Dependent Photocatalytic Activity of Nanostructured Titanium Dioxide Coatings with Silver Nanoparticles
This study aims to improve the photocatalytic properties of titanium dioxide nanorods (TNRs) and other related nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) by modifying them with silver nanoparticles (AgNPs). This preparation is carried out using a two-step method: sol–gel dip-coating deposition combined with hydrothermal crystal growth. Further modification with AgNPs was achieved through the photoreduction of Ag+ ions under UV illumination. The investigation explores the impact of different growth factors on the morphological development of TiO2 nanostructures by modulating (i) the chemical composition, the water:acid ratio, (ii) the precursor concentration involved in the hydrothermal process, and (iii) the duration of the hydrothermal reaction. Morphological characteristics, including the length, diameter, and nanorod density of the nanostructures, were analyzed using scanning electron microscope (SEM). The chemical states were determined through use of the X-ray photoelectron spectroscopy (XPS) technique, while phase composition and crystalline structure analysis was performed using the Grazing Incidence X-ray Diffraction (GIXRD) method. The results indicate that various nanostructures (dense nanorods, needle-like nanorods, nanoballs, and nanoflowers) can be obtained by modifying these parameters. The photocatalytic efficiency of these nanostructures and Ag-coated nanostructures was assessed by measuring the degradation of the organic dye rhodamine B (RhB) under both ultraviolet (UV) irradiation and visible light. The results clearly show that UV light causes the RhB solution to lose its color, whereas under visible light RhB changes into rhodamine 110, indicating a successful photocatalytic transformation. The nanoball-like structures’ modification with the active metal silver (TNRs 4 Ag) exhibited high photocatalytic efficiency under both ultraviolet (UV) and visible light for different chemical composition parameters. The nanorod structure (TNRs 2 Ag) is more efficient under UV, but under visible-light photocatalyst, the TNRs 6 Ag (dense nanorods) sample is more effective.
Carbon quantum Dot@Silver nanocomposite–based fluorescent imaging of intracellular superoxide anion
Silver nanoparticle (Ag NP)–coated carbon quantum dot (CQD) core-shell-structured nanocomposites (CQD@Ag NCs) were developed for fluorescent imaging of intracellular superoxide anion (O 2 •− ). The morphology of CQD@Ag NCs was investigated by transmission electron microscopy, and the composition was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. CQDs display blue fluorescence with excitation/emission maxima at 360/440 nm, and the fluorescence was quenched by Ag NPs in CQD@Ag NCs. In the presence of O 2 •− , Ag NPs were oxide-etched and the fluorescence of CQDs was recovered. A linearity between the relative fluorescence intensity and O 2 •− solution concentration within the range 0.6 to 1.6 μM was found, with a detection limit of 0.3 μM. Due to their high sensitivity, selectivity, and low cytotoxicity, the as-synthesized CQD@Ag NCs have been successfully applied for imaging of O 2 •− in MCF-7 cells during the whole process of autophagy induced by serum starvation. In our perception, the developed method provides a cost-effective, sensitive, and selective tool in bioimaging and monitoring of intracellular O 2 •− changes, and is promising for potential biological applications. Graphical abstract Illustration of the synthesis of carbon quantum Dot@Silver nanocomposites (CQD@Ag NCs), and CQD@Ag NCs as a “turn-on” nanoprobe for fluorescent imaging of intracellular superoxide anion
Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities
In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.