Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,961 result(s) for "Metallic oxides"
Sort by:
Functional metal oxides
Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors.This makes them attractive candidates in modern technology?they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive.
Metal oxide-based carbon nanocomposites for environmental safety and remediation
\"This book focusses on nanotechnology for the preparation of metal oxide-based carbon nanocomposite materials for environmental remediation. It analyses the use of nanomaterials for water, soil, and air solutions, emphasizing on environmental risks of pollution. It further explores how magnetic and activated carbon nanomaterials are being used for sustainable environmental protection of water and soil, and detection of harmful gases. Status and major challenges of using carbon-based nanomaterials on a large scale are explained supported by relevant case studies. Features: Exhaustively covers nanotechnology, metal oxide- carbon nanocomposites and their application in soil, water and air treatments. Explores pollutants nano-sensing and their remediation towards environmental safety. Includes economics analysis and environmental aspects of metal oxide materials. Describes why properties of oxide-carbon based nanomaterials useful for environmental applications. Discusses current cases studies of remediation technologies. This book is aimed at graduate students and researchers in nanotechnology, environmental technology and remediation\"-- Provided by publisher.
Frontiers of 4d-and 5d-transition metal oxides
This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides. New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ significantly from those of the heavily studied 3d-transition metal oxides, mainly due to the relatively strong influence of the spin-orbit interaction and orbital order in 4d- and 5d materials. The immense growth in publications addressing the physical properties of these novel materials underlines the need to document recent advances and the current state of this field. This book includes overviews of the current experimental situation concerning these materials.
Performance Characteristic Analysis of Metallic and Non-Metallic Oxide Nanofluids for a Compound Parabolic Collector: Improvement of Renewable Energy Technologies in Buildings
The building sector is targeting net-zero emissions through the integration of renewable energy technologies, especially for space cooling and heating applications. In this regard, the use of solar thermal concentrating collectors is of vital importance. The performance of these collectors increases by using an efficient fluid such as a nanofluid due to their high thermal conductivity. This research addresses the preparation, stability analysis, and characterisation of metallic and non-metallic oxide nanofluids and their experimental analysis in a compound parabolic collector (CPC) system. Five different combinations of nanofluids are used with different volumetric concentrations (0.025%, 0.05%, and 0.075%) including multi-wall carbon nanotube with water (MWCNT–H2O), multi-wall carbon nanotube with ethylene glycol (MWCNT–EG), aluminium oxide with water (Al2O3–H2O), aluminium oxide with ethylene glycol (Al2O3–EG), and magnesium oxide with ethylene glycol (MgO–EG). The prepared nanofluids are characterised in terms of thermal conductivity and viscosity. Detailed experimentation is performed to investigate the CPC system integrated with the nanofluids. The results obtained from the detailed characterisation of the MWCNT–H2O nanofluid showed that the nanofluids have a 37.17% better thermal conductivity than distilled water as a primary fluid, and the MWCNT–EG nanofluid has demonstrated an increase in viscosity by 8.5% compared to ethylene glycol (EG). The experimental analysis revealed that the thermal efficiency of the collector integrated with the MWCNT–H2O nanofluid is increased by 33% compared to water. Meanwhile, the thermal efficiency of the collector with MWCNT–EG was increased by 24.9% compared to EG. Moreover, a comparative analysis among metallic nanofluids was also performed, i.e., Al2O3–H2O, Al2O3–EG, and MgO–EG. In each case, the thermal efficiency of the collector was recorded, which was greater than the base fluid by percentages of 29.4%, 22.29%, and 23.1%, respectively. The efficiency of non-metallic nanofluids is better than metallic nanofluids by 7.7%. From the obtained results, it can be concluded that the CPC system performed best with MWCNT–H2O compared to any other combination of nanofluids.
Stability Qualification of Resins/Metallic Oxide Composites for Surface Oxidative Protection
The accelerated degradation of alkyd resins via γ-irradiation is investigated using non-isothermal chemiluminescence. The stability qualification is possible through the comparison of emission intensities on a temperature range starting from 100 °C up to 250 °C under accelerated degradation caused by radiolysis scission. The measurements achieved in the samples of cured state resin modified by various inorganic oxides reveal the influence of metallic traces on the aging amplitude, when the thermal resistance increases as the irradiation dose is augmented. Even though the unirradiated samples present a prominent chemiluminescence intensity peak at 80 °C, the γ-processed specimens show less intense spectra under the pristine materials and the oxidation starts smoothly after 75 °C. The values of activation energies required for oxidative degradation of the sample subjected to 100 kGy are significantly higher in the composite states than in the neat resin. The degradation mechanism of polymerized resins is discussed taking into account the effects of fillers on the stability of studied epoxy resin at various temperatures when the degradation and crosslinking are in competition for the decay of free radical.
Interdiffusion Behaviors and Microstructure Recombination Mechanisms of Fesub.2TiOsub.4–CaO and FeTiOsub.3–CaO Systems During Sintering at 1200 °C
Vanadium–titanium magnetite (VTM) is an iron ore abundantly available in China. The dominant utilization route is blast furnace smelting; however, Ti in the ore deteriorates sinter strength, making it urgent to clarify Fe-Ti-Ca interactions during sintering. In this work, single-phase FeTiO[sub.3] and Fe[sub.2]TiO[sub.4] were synthesized and each paired with CaO to fabricate diffusion couples. The couples were heated at 1200 °C for 30, 60, 90, and 120 min to investigate their interdiffusion behaviors and microstructure recombination mechanisms. The results show that, at 1200 °C, solid-state diffusion—not interfacial reaction—controls mass transfer in both FeTiO[sub.3]-CaO and Fe[sub.2]TiO[sub.4]-CaO systems. Distinct Fe-rich and Ti-rich sublayers appear within the reaction zone, and banded CaTiO[sub.3] forms adjacent to the FeTiO[sub.3]/Fe[sub.2]TiO[sub.4] matrices. The interdiffusion coefficients were determined to be 4.08 × 10[sup.−10] cm[sup.2]·s[sup.−1] and 7.81 × 10[sup.−10] cm[sup.2]·s[sup.−1], and the growth of the reaction layer follows a parabolic law, which can be expressed as x [sup.2] = 2 × 1.562 × 10[sup.−9] t and x [sup.2] = 2 × 0.8159 × 10[sup.−9] t, respectively. The coefficients of determination exceed 0.90, indicating reliable regression fits.
Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms
Oxidation reactions on semiconducting metal oxide (SMOs) surfaces have been extensively worked on in catalysis, fuel cells, and sensors. SMOs engage powerfully in energy-related applications such as batteries, supercapacitors, solid oxide fuel cells (SOFCs), and sensors. A deep understanding of SMO surface and oxygen interactions and defect engineering has become significant because all of the above-mentioned applications are based on the adsorption/absorption and consumption/transportation of adsorbed (physisorbed-chemisorbed) oxygen. More understanding of adsorbed oxygen and oxygen vacancies (VO•,VO••) is needed, as the former is the vital requirement for sensing chemical reactions, while the latter facilitates the replenishment of adsorbed oxygen ions on the surface. We determined the relation between sensor response (sensitivity) and the amounts of adsorbed oxygen ions (O2(ads)−, O(ads), −O2(ads)2−, O(ads)2−), water/hydroxide groups (H2O/OH−), oxygen vacancies (VO•, VO••), and ordinary lattice oxygen ions (Olattice2−) as a function of temperature. During hydrogen (H2) testing, the different oxidation states (W6+, W5+, and W4+) of WO3 were quantified and correlated with oxygen vacancy formation (VO•, VO••). We used a combined application of XPS, UPS, XPEEM-LEEM, and chemical, electrical, and sensory analysis for H2 sensing. The sensor response was extraordinarily high: 424 against H2 at a temperature of 250 °C was recorded and explained on the basis of defect engineering, including oxygen vacancies and chemisorbed oxygen ions and surface stoichiometry of WO3. We established a correlation between the H2 sensing mechanism of WO3, sensor signal magnitude, the amount of adsorbed oxygen ions, and sensor testing temperature. This paper also provides a review of the detection, quantification, and identification of different adsorbed oxygen species. The different surface and bulk-sensitive characterization techniques relevant to analyzing the SMOs-based sensor are tabulated, providing the sensor designer with the chemical, physical, and electronic information extracted from each technique.
Stage-Specific Effects of TiOsub.2, ZnO, and CuO Nanoparticles on Green Microalga Haematococcus lacustris: Biomass and Astaxanthin Biosynthesis
Evaluating the effects of nanoparticles on biomass growth and astaxanthin accumulation in Haematococcus lacustris is crucial for optimizing the production of astaxanthin, a valuable carotenoid with numerous industrial applications. Identifying the life stages at which these nanoparticles exert stimulatory or toxic effects will aid in formulating effective production strategies. This study investigated the effects of titanium dioxide (TiO[sub.2]), zinc oxide (ZnO), and copper oxide (CuO) nanoparticles on biomass growth, astaxanthin biosynthesis, and lipid accumulation in Haematococcus lacustris, with a focus on their stage-specific impact throughout the algal life cycle. The nanoparticles were added at the start of cultivation, and the microalgal cultures developed continuously in their presence. Sampling for biochemical analyses was performed at distinct life stages (green motile, palmella, and aplanospore), enabling the assessment of stage-dependent responses. TiO[sub.2]NPs significantly stimulated biomass accumulation during the green motile stage. In the palmella stage, astaxanthin levels decreased in the presence of all nanoparticles, likely due to the absence of a stress signal required to activate pigment biosynthesis, despite ongoing biomass growth. In contrast, the aplanospore stage exhibited reactivation of astaxanthin biosynthesis and increased lipid accumulation, particularly under TiO[sub.2]NPs. Astaxanthin content increased by 21.57%. This study highlights that TiO[sub.2], ZnO, and CuO nanoparticles modulate growth and astaxanthin biosynthesis in Haematococcus lacustris in a life cycle-dependent manner.
Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.