Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
96 result(s) for "Metallomics"
Sort by:
A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species—A Critical Review
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Isotope metallomics approaches for medical research
Metallomics is a rapidly evolving field of bio-metal research that integrates techniques and perspectives from other “-omics” sciences (e.g. genomics, proteomics) and from research vocations further afield. Perhaps the most esoteric of this latter category has been the recent coupling of biomedicine with element and isotope geochemistry, commonly referred to as isotope metallomics. Over the course of less than two decades, isotope metallomics has produced numerous benchmark studies highlighting the use of stable metal isotope distribution in developing disease diagnostics—e.g. cancer, neurodegeneration, osteoporosis—as well as their utility in deciphering the underlying mechanisms of such diseases. These pioneering works indicate an enormous wealth of potential and provide a call to action for researchers to combine and leverage expertise and resources to create a clear and meaningful path forward. Doing so with efficacy and impact will require not only building on existing research, but also broadening collaborative networks, bolstering and deepening cross-disciplinary channels, and establishing unified and realizable objectives. The aim of this review is to briefly summarize the field and its underpinnings, provide a directory of the state of the art, outline the most encouraging paths forward, including their limitations, outlook and speculative upcoming breakthroughs, and finally to offer a vision of how to cultivate isotope metallomics for an impactful future.
Micro- and Macronutrients in Endometrial Cancer—From Metallomic Analysis to Improvements in Treatment Strategies
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches
The multifactorial etiology of major depressive disorder (MDD) includes biological, environmental, genetic, and psychological aspects. Recently, there has been an increasing interest in metallomic studies in psychiatry, aiming to evaluate the role of chosen trace elements in the MDD etiology as well as the progression of symptoms. This narrative review aims to summarize the available literature on the relationship between the concentration of chosen elements in the serum of patients with MDD and the onset and progression of this psychiatric condition. The authors reviewed PubMed, Web of Science, and Scopus databases searching for elements that had been investigated so far and further evaluated them in this paper. Ultimately, 15 elements were evaluated, namely, zinc, magnesium, selenium, iron, copper, aluminium, cadmium, lead, mercury, arsenic, calcium, manganese, chromium, nickel, and phosphorus. The association between metallomic studies and psychiatry has been developing dynamically recently. According to the results of current research, metallomics might act as a potential screening tool for patients with MDD while at the same time providing an assessment of the severity of symptoms. Either deficiencies or excessive amounts of chosen elements might be associated with the progression of depressive symptoms or even the onset of the disease among people predisposed to MDD.
Fate and impact at molecular level of diatrizoic acid and iohexol contrast agents in Dreissena polymorpha mollusks
Iodinated contrast media (ICMs) used in X-ray imaging for medical diagnostics are released into wastewater and then encountered in river water at concentrations ranging from several dozen to hundreds of µg/L, and even thousands of µg/L in hospital effluents. ICMs are considered as emerging pollutants as their occurrence and impact on ecosystems and the environment are poorly documented. Even if they are considered inert for humans, aquatic organisms are continuously exposed to ICMs, and their potential deleterious effects are therefore questioned as we have recently demonstrated that they enter into organisms such as the zebra mussels. To answer this question, Dreissena polymorpha were exposed to two ICMs of different osmolality, diatrizoic acid and iohexol, at an environmental concentration (100 µg/L) for 21 days before a depuration phase of 4 days. The occurrence, fate, and impact of both ICMs in these organisms were studied using a metallomic approach. Thus, iodine as well as endogenous copper and zinc were quantified and analyzed in cytosolic extracts of digestive glands, gills, and gonads of mussels by size exclusion chromatography coupled to ICP MS. This work shows that a subcellular fractionation is necessary to distinguish variations in total element content. The cytosolic iodoprotein chromatographic pattern was consistent for the three organs and confirmed the presence of ICMs in cytosols. Additionally, this exploratory work tends to show a weak biological effect of ICMs with a substantial variation of the profile of Cu-binding proteins mostly in the gill cytosol and to a lesser extent, in the digestive gland cytosol.
Effects of Trace Elements on Endocrine Function and Pathogenesis of Thyroid Diseases—A Literature Review
The thyroid gland is an endocrine organ whose hormones enable the proper functioning of the organism. The normal function of this organ is influenced by internal and external factors. One of the external factors is trace elements. Trace elements in appropriate concentrations are necessary for the proper functioning of the thyroid. Fe, Cu, Mn, I, Zn, and Se are part of the enzymes involved in oxidative stress reduction, while Cd, Hg, and Pb can increase ROS production. Cu and Fe are necessary for the correct TPO synthesis. An imbalance in the concentration of trace elements such as Fe, Cu, Co, I, Mn, Zn, Ag, Cd, Hg, Pb, and Se in thyroid cells can lead to thyroid diseases such as Graves’ disease, Hashimoto’s thyroiditis, hypothyroidism, autoimmune thyroiditis, thyroid nodules, thyroid cancer, and postpartum thyroiditis. Lack of adequate Fe levels may lead to hypothyroidism and cancer development. The thyroid gland’s ability to absorb I is reversibly reduced by Co. Adequate levels of I are required for correct thyroid function; both deficiency and excess can predispose to the development of thyroid disorders. High concentrations of Mn may lead to hypothyroidism. Furthermore, Mn may cause cancer development and progression. Insufficient Zn supplementation causes hypothyroidism and thyroid nodule development. Cd affecting molecular mechanisms may also lead to thyroid disorders. Hg accumulating in the thyroid may interfere with hormone secretion and stimulate cancer cell proliferation. A higher risk of thyroid nodules, cancer, autoimmune thyroiditis, and hypothyroidism were linked to elevated Pb levels. Se deficiency disrupts thyroid cell function and may lead to several thyroid disorders. On the other hand, some of the trace elements may be useful in the treatment of thyroid diseases. Therefore, the effects of trace elements on the thyroid require further research.
Mechanisms involved in the positive effects of high zinc exposure on growth of Sedum alfredii
Background and aims Zinc (Zn) is an essential micronutrient for plant growth, but excessive Zn can lead to toxic symptoms. However, studies have reported that high concentrations of Zn have a promoting effect on the growth of Sedum alfredii Hance, a native Zn/cadmium(Cd) hyperaccumulator in China. Thus, in order to explore the underlying mechanism behind the growth-promoting effects of high Zn level, we conducted a hydroponic experiment on S. alfredii . Methods We compared hyperaccumulating ecotype (HE) with non-hyperaccumulating ecotype (NHE) of S. alfredii , set Zn levels to 0.5 μM, 5 μM, 100 μM, and 250 μM, and comprehensively utilized metallomics, nano-XRF analysis, and transcriptomics techniques to explore the underlying mechanism. Results At 100 μM and 250 μM Zn level, the growth of HE roots was promoted while the growth of NHE was inhibited. Nano-XRF analysis showed that Zn was accumulated in the cell walls of the epidermis and cortex in HE roots, whereas scattered in the root cells in NHE. The content of auxin in HE roots was increased by 1.26-fold and the auxin oxidase activity decreased by 2.94-fold after exposure to 100 μM Zn for 12 h, while NHE exhibited the opposite trend. Transcriptomic results showed that HE up-regulated genes were related to carbohydrate metabolism, nitrogen metabolism, carbon fixation, and tryptophan biosynthesis; down-regulated genes were related to lipid metabolism and linoleic acid metabolism. Conclusions High Zn levels have positive effect on hyperaccumulating ecotype of S. alfredii growth by promoting tryptophan pathway to regulate auxin biosynthesis.
Micronutrient Status and Breast Cancer: A Narrative Review
Breast cancer is one of the most common cancers worldwide, at the same time being one of the most prevalent causes of women’s death. Many factors such as alcohol, weight fluctuations, or hormonal replacement therapy can potentially contribute to breast cancer development and progression. Another important factor in breast cancer onset includes micronutrient status. In this narrative review, we analyzed 23 micronutrients and their possible influence on breast cancer onset and progression. Further, the aim of this study was to investigate the impact of micronutrient status on the prevention of breast cancer and its possible influence on various therapeutic pathways. We researched meta-analyses, systemic and narrative reviews, retrospective studies, as well as original studies on human and animal models. The results of these studies indicate a possible correlation between the different levels of micronutrients and a decreased risk of breast cancer as well as a better survival rate. However, further studies are necessary to establish adequate doses of supplementation of the chosen micronutrients and the exact mechanisms of micronutrient impact on breast cancer therapy.
Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism
The interaction between mercury (Hg) and selenium (Se) is one of the best known examples of biological antagonism, yet the underlying mechanism remains unclear. This review focuses on the possible pathways leading to the Hg‐Se antagonism, with an emphasis on the potential Hg‐Se compounds that are responsible for the antagonism at the molecular level (i.e., bis[methylmercuric]selenide, methylmercury selenocysteinate, selenoprotein P‐bound HgSe clusters, and the biominerals HgSexS1−x). The presence of these compounds in biological systems has been suggested by direct or indirect evidence, and their chemical properties support their potentially key roles in alleviating the toxicity of Hg and Se (at high Hg and Se exposures, respectively) and deficiency of Se (at low Se exposures). Direct analytical evidences are needed, however, to confirm their in vivo presence and metabolic pathways, as well as to identify the roles of other potential Hg‐Se compounds. Further studies are also warranted for the determination of thermodynamic properties of these compounds under physiological conditions toward a better understanding of the Hg‐Se antagonism in biota, particularly under real world exposure scenarios.