Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,951 result(s) for "Metasurfaces"
Sort by:
Tunable metasurfaces towards versatile metalenses and metaholograms: a review
Metasurfaces have attracted great attention due to their ability to manipulate the phase, amplitude, and polarization of light in a compact form. Tunable metasurfaces have been investigated recently through the integration with mechanically moving components and electrically tunable elements. Two interesting applications, in particular, are to vary the focal point of metalenses and to switch between holographic images. We present the recent progress on tunable metasurfaces focused on metalenses and metaholograms, including the basic working principles, advantages, and disadvantages of each working mechanism. We classify the tunable stimuli based on the light source and electrical bias, as well as others such as thermal and mechanical modulation. We conclude by summarizing the recent progress of metalenses and metaholograms, and providing our perspectives for the further development of tunable metasurfaces.
Smart sensing metasurface with self-defined functions in dual polarizations
For the intelligence of metamaterials, the -sensing mechanism and programmable reaction units are two important components for self-recognition and -determination. However, their realization still face great challenges. Here, we propose a smart sensing metasurface to achieve self-defined functions in the framework of digital coding metamaterials. A sensing unit that can simultaneously process the sensing channel and realize phase-programmable capability is designed by integrating radio frequency (RF) power detector and PIN diodes. Four sensing units distributed on the metasurface aperture can detect the microwave incidences in the - and -polarizations, while the other elements can modulate the reflected phase patterns under the control of a field programmable gate array (FPGA). To validate the performance, three schemes containing six coding patterns are presented and simulated, after which two of them are measured, showing good agreements with designs. We envision that this work may motivate studies on smart metamaterials with high-level recognition and manipulation.
Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances
The interplay between two paradigms, artificial intelligence (AI) and optical metasurfaces, nowadays appears obvious and unavoidable. AI is permeating literally all facets of human activity, from science and arts to everyday life. On the other hand, optical metasurfaces offer diverse and sophisticated multifunctionalities, many of which appeared impossible only a short time ago. The use of AI for optimization is a general approach that has become ubiquitous. However, here we are witnessing a two-way process—AI is improving metasurfaces but some metasurfaces are also improving AI. AI helps design, analyze and utilize metasurfaces, while metasurfaces ensure the creation of all-optical AI chips. This ensures positive feedback where each of the two enhances the other one: this may well be a revolution in the making. A vast number of publications already cover either the first or the second direction; only a modest number includes both. This is an attempt to make a reader-friendly critical overview of this emerging synergy. It first succinctly reviews the research trends, stressing the most recent findings. Then, it considers possible future developments and challenges. The author hopes that this broad interdisciplinary overview will be useful both to dedicated experts and a general scholarly audience.
Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers
Optical sensors, with great potential to convert invisible bioanalytical response into readable information, have been envisioned as a powerful platform for biological analysis and early diagnosis of diseases. However, the current extraction of sensing data is basically processed via a series of complicated and time-consuming calibrations between samples and reference, which inevitably introduce extra measurement errors and potentially annihilate small intrinsic responses. Here, we have proposed and experimentally demonstrated a calibration-free sensor for achieving high-precision biosensing detection, based on an optically controlled terahertz (THz) ultrafast metasurface. Photoexcitation of the silicon bridge enables the resonant frequency shifting from 1.385 to 0.825 THz and reaches the maximal phase variation up to 50° at 1.11 THz. The typical environmental measurement errors are completely eliminated in theory by normalizing the Fourier-transformed transmission spectra between ultrashort time delays of 37 ps, resulting in an extremely robust sensing device for monitoring the cancerous process of gastric cells. We believe that our calibration-free sensors with high precision and robust advantages can extend their implementation to study ultrafast biological dynamics and may inspire considerable innovations in the field of medical devices with nondestructive detection.
A review of gap-surface plasmon metasurfaces: fundamentals and applications
Plasmonic metasurfaces, which can be considered as the two-dimensional analog of metal-based metamaterials, have attracted progressively increasing attention in recent years because of the ease of fabrication and unprecedented control over the reflected or transmitted light while featuring relatively low losses even at optical wavelengths. Among all the different design approaches, gap-surface plasmon metasurfaces – a specific branch of plasmonic metasurfaces – which consist of a subwavelength thin dielectric spacer sandwiched between an optically thick metal film and arrays of metal subwavelength elements arranged in a strictly or quasi-periodic fashion, have gained awareness from researchers working at practically any frequency regime as its realization only requires a single lithographic step, yet with the possibility to fully control the amplitude, phase, and polarization of the reflected light. In this paper, we review the fundamentals, recent developments, and opportunities of gap-surface plasmon metasurfaces. Starting with introducing the concept of gap-surface plasmon metasurfaces, we present three typical gap-surface plasmon resonators, introduce generalized Snell’s law, and explain the concept of Pancharatnam-Berry phase. We then overview the main applications of gap-surface plasmon metasurfaces, including beam-steerers, flat lenses, holograms, absorbers, color printing, polarization control, surface wave couplers, and dynamically reconfigurable metasurfaces. The review is ended with a short summary and outlook on possible future developments.
Recent Development in Metasurfaces: A Focus on Sensing Applications
One of the fastest-expanding study areas in optics over the past decade has been metasurfaces (MSs). These subwavelength meta-atom-based ultrathin arrays have been developed for a broad range of functions, including lenses, polarization control, holography, coloring, spectroscopy, sensors, and many more. They allow exact control of the many properties of electromagnetic waves. The performance of MSs has dramatically improved because of recent developments in nanofabrication methods, and this concept has developed to the point that it may be used in commercial applications. In this review, a vital topic of sensing has been considered and an up-to-date study has been carried out. Three different kinds of MS absorber sensor formations, all-dielectric, all-metallic, and hybrid configurations, are presented for biochemical sensing applications. We believe that this review paper will provide current knowledge on state-of-the-art sensing devices based on MSs.
Optical metasurfaces for generating and manipulating optical vortex beams
Optical vortices (OVs) carrying orbital angular momentum (OAM) have attracted considerable interest in the field of optics and photonics owing to their peculiar optical features and extra degree of freedom for carrying information. Although there have been significant efforts to realize OVs using conventional optics, it is limited by large volume, high cost, and lack of design flexibility. Optical metasurfaces have recently attracted tremendous interest due to their unprecedented capability in the manipulation of the amplitude, phase, polarization, and frequency of light at a subwavelength scale. Optical metasurfaces have revolutionized design concepts in photonics, providing a new platform to develop ultrathin optical devices for the realization of OVs at subwavelength resolution. In this article, we will review the recent progress in optical metasurface-based OVs. We provide a comprehensive discussion on the optical manipulation of OVs, including OAM superposition, OAM sorting, OAM multiplexing, OAM holography, and nonlinear metasurfaces for OAM generation and manipulation. The rapid development of metasurface for OVs generation and manipulation will play an important role in many relevant research fields. We expect that metasurface will fuel the continuous progress of wearable and portable consumer electronics and optics where low-cost and miniaturized OAM related systems are in high demand.
Metamaterials and metasurfaces
Metamaterials are commonly known to make things invisible. As artificially structured metal-dielectric composites mimicking natural materials they exhibit properties that are not available in Nature, including: negative refractive index, reversal of Doppler effect and the reversed éCerenkov effect. Metasurface is a planar version of metamaterial exhibiting a number of novel functionalities. This book reviews the physics, technology, and design issues related to metamaterials and metasurfaces. The text covers the fundamental concepts and potential applications as well as future trends. It explores all aspects of metamaterial's and metasurface's physics and engineering operating in the electromagnetic spectrum covering microwave, terahertz and optical domain. This is a suitable text for teaching in bachelor's and master's degree courses on metamaterials and metasurfaces in universities and engineering colleges. The key audience for this book includes students enrolled on metamaterials and metasurfaces modules, researchers, as well as industry professionals. Part of IOP Series in Electromagnetics and Metamaterials.
A miniaturized polarization-insensitive energy absorption metasurface
A novel metasurface structure for energy absorption is proposed. The metasurface structure unit is composed of four bidirectional arrow patches, which are connected by load. In order to achieve unit miniaturization, a humanoid slot structure is proposed, which reduces the unit size to 0.23 λ. The designed metasurface structure can capture more than 90% of the energy at 5.8 GHz, has the characteristics of polarization insensitive, and can maintain 80% of the energy capture efficiency between 0 and 45°. The simulation results show that the structure is nonlinear to the load and can be applied to the design of rectification metasurface structures.
Optical properties of metasurfaces infiltrated with liquid crystals
Optical metasurfaces allow the ability to precisely manipulate the wavefront of light, creating many interesting and exotic optical phenomena. However, they generally lack dynamic control over their optical properties and are limited to passive optical elements. In this work, we report the nontrivial infiltration of nanostructured metalenses with three respective nematic liquid crystals of different refractive index and birefringence. The optical properties of the metalens are evaluated after liquid-crystal infiltration to quantify its effect on the intended optical design. We observe a significant modification of the metalens focus after infiltration for each liquid crystal. These optical changes result from modification of local refractive index surrounding the metalens structure after infiltration. We report qualitative agreement of the optical experiments with finite-difference time-domain solver (FDTD) simulation results. By harnessing the tunability inherent in the orientation dependent refractive index of the infiltrated liquid crystal, the metalens system considered here has the potential to enable dynamic reconfigurability in metasurfaces.