Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,605
result(s) for
"Methamphetamine - pharmacology"
Sort by:
Human Pharmacology of Mephedrone in Comparison with MDMA
by
Torrens, Marta
,
Olesti, Eulàlia
,
Mateus, Julián-Andrés
in
Adult
,
Amphetamines
,
Blood Pressure - drug effects
2016
Mephedrone (4-methylmethcathinone) is a novel psychoactive substance popular among drug users because it displays similar effects to MDMA (3,4-methylenedioxymethamphetamine, ecstasy). Mephedrone consumption has been associated with undesirable effects and fatal intoxications. At present, there is no research available on its pharmacological effects in humans under controlled and experimental administration. This study aims to evaluate the clinical pharmacology of mephedrone and its relative abuse liability compared with MDMA. Twelve male volunteers participated in a randomized, double-blind, crossover, and placebo-controlled trial. The single oral dose conditions were: mephedrone 200 mg, MDMA 100 mg, and placebo. Outcome variables included physiological, subjective, and psychomotor effects, and pharmacokinetic parameters. The protocol was registered in ClinicalTrials.gov (NCT02232789). Mephedrone produced a significant increase in systolic and diastolic blood pressure, heart rate, and pupillary diameter. It elicited stimulant-like effects, euphoria, and well-being, and induced mild changes in perceptions with similar ratings to those observed after MDMA administration although effects peaked earlier and were shorter in duration. Maximal plasma concentration values for mephedrone and MDMA peaked at 1.25 h and 2.00 h, respectively. The elimination half-life for mephedrone was 2.15 h and 7.89 h for MDMA. In a similar manner to MDMA, mephedrone exhibits high abuse liability. Its earlier onset and shorter duration of effects, probably related to its short elimination half-life, could explain a more compulsive pattern of use as described by the users.
Journal Article
Neural complexity is increased after low doses of LSD, but not moderate to high doses of oral THC or methamphetamine
by
Haggarty, Connor J.
,
Tare, Ilaria
,
Murray, Conor H.
in
Adult
,
Anesthesia
,
Brain - drug effects
2024
Neural complexity correlates with one's level of consciousness. During coma, anesthesia, and sleep, complexity is reduced. During altered states, including after lysergic acid diethylamide (LSD), complexity is increased. In the present analysis, we examined whether low doses of LSD (13 and 26 µg) were sufficient to increase neural complexity in the absence of altered states of consciousness. In addition, neural complexity was assessed after doses of two other drugs that significantly altered consciousness and mood: delta-9-tetrahydrocannabinol (THC; 7.5 and 15 mg) and methamphetamine (MA; 10 and 20 mg). In three separate studies (N = 73; 21, LSD; 23, THC; 29, MA), healthy volunteers received placebo or drug in a within-subjects design over three laboratory visits. During anticipated peak drug effects, resting state electroencephalography (EEG) recorded Limpel-Ziv complexity and spectral power. LSD, but not THC or MA, dose-dependently increased neural complexity. LSD also reduced delta and theta power. THC reduced, and MA increased, alpha power, primarily in frontal regions. Neural complexity was not associated with any subjective drug effect; however, LSD-induced reductions in delta and theta were associated with elation, and THC-induced reductions in alpha were associated with altered states. These data inform relationships between neural complexity, spectral power, and subjective states, demonstrating that increased neural complexity is not necessary or sufficient for altered states of consciousness. Future studies should address whether greater complexity after low doses of LSD is related to cognitive, behavioral, or therapeutic outcomes, and further examine the role of alpha desynchronization in mediating altered states of consciousness.
Journal Article
Effects of MDMA on attention to positive social cues and pleasantness of affective touch
2019
The psychostimulant drug ±3,4-methylenedioxymethamphetamine (MDMA) reportedly produces distinctive feelings of empathy and closeness with others. MDMA increases social behavior in animal models and has shown promise in psychiatric disorders, such as autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). How it produces these prosocial effects is not known. This behavioral and psychophysiological study examined the effects of MDMA, compared with the prototypical stimulant methamphetamine (MA), on two measures of social behavior in healthy young adults: (i) responses to socially relevant, “affective” touch, and (ii) visual attention to emotional faces. Men and women (N = 36) attended four sessions in which they received MDMA (0.75 or 1.5 mg/kg), MA (20 mg), or a placebo in randomized order under double-blind conditions. Responses to experienced and observed affective touch (i.e., being touched or watching others being touched) were assessed using facial electromyography (EMG), a proxy of affective state. Responses to emotional faces were assessed using electrooculography (EOG) in a measure of attentional bias. Subjective ratings were also included. We hypothesized that MDMA, but not MA, would enhance the ratings of pleasantness and psychophysiological responses to affective touch and increase attentional bias toward positive facial expressions. Consistent with this, we found that MDMA, but not MA, selectively enhanced ratings of pleasantness of experienced affective touch. Neither drug altered the ratings of pleasantness of observed touch. On the EOG measure of attentional bias, MDMA, but not MA, increased attention toward happy faces. These results provide new evidence that MDMA can enhance the experience of positive social interactions; in this case, pleasantness of physical touch and attentional bias toward positive facial expressions. The findings are consistent with evidence that the prosocial effects are unique to MDMA relative to another stimulant. Understanding the behavioral and neurobiological processes underlying the distinctive social effects of MDMA is a key step to developing the drug for psychiatric disorders.
Journal Article
Methamphetamine-induced adaptation of learning rate dynamics depend on baseline performance
2025
The ability to calibrate learning according to new information is a fundamental component of an organism’s ability to adapt to changing conditions. Yet, the exact neural mechanisms guiding dynamic learning rate adjustments remain unclear. Catecholamines appear to play a critical role in adjusting the degree to which we use new information over time, but individuals vary widely in the manner in which they adjust to changes. Here, we studied the effects of a low dose of methamphetamine (MA), and individual differences in these effects, on probabilistic reversal learning dynamics in a within-subject, double-blind, randomized design. Participants first completed a reversal learning task during a drug-free baseline session to provide a measure of baseline performance. Then they completed the task during two sessions, one with MA (20 mg oral) and one with placebo (PL). First, we showed that, relative to PL, MA modulates the ability to dynamically adjust learning from prediction errors. Second, this effect was more pronounced in participants who performed moderately low at baseline. These results present novel evidence for the involvement of catecholaminergic transmission on learning flexibility and highlights that baseline performance modulates the effect of the drug.
Journal Article
Lack of effect of methamphetamine on reward-related brain activity in healthy adults
by
Haggarty, Connor J
,
Nusslock, Robin
,
de Wit, Harriet
in
Drug abuse
,
Methamphetamine
,
Reinforcement
2024
IntroductionStimulant drugs are thought to alter processing of rewarding stimuli. However, the mechanisms by which they do this are not fully understood.MethodIn this study we used EEG to assess effects of single doses of methamphetamine (MA) on neural responses during anticipation and receipt of reward in healthy volunteers. Healthy young men and women (N = 28) completed three sessions in which they received placebo, a low MA dose (10 mg) or a higher MA dose (20 mg) under double blind conditions. Subjective and cardiovascular measures were obtained, and EEG was used to assess brain activity during an electrophysiological version of the Monetary Incentive Delay (eMID) task.ResultsEEG measures showed expected patterns during anticipation and receipt of reward, and MA produced its expected effects on mood and cardiovascular function. However, MA did not affect EEG responses during either anticipation or receipt of rewards.ConclusionsThese findings suggest that the effects of MA on EEG signals of reward processing are subtle, and not related to the drug’s effects on subjective feelings of well-being. The findings contribute to our understanding of the neural effects of MA during behaviors related to reward.
Journal Article
Prevention of relapse to methamphetamine self-administration by environmental enrichment: involvement of glucocorticoid receptors
2022
RationaleIn rodents, environmental enrichment (EE) produces both preventive and curative effects on drug addiction, and this effect is believed to depend at least in part on EE’s actions on the stress system.ObjectivesThis study investigated whether exposure to EE during abstinence reduces methamphetamine seeking after extended self-administration. In addition, we investigated whether these effects are associated with alterations in the levels of glucocorticoid receptors (GR) in the brain and whether administration of GR antagonists blocks methamphetamine relapse.MethodsWe allowed rats to self-administer methamphetamine for twenty 14-h sessions. After 3 weeks of abstinence either in standard (SE) or EE conditions, we measured methamphetamine seeking in a single 3-h session. Then, we used western blot techniques to measure GR levels in several brain areas. Finally, in an independent group of rats, after methamphetamine self-administration and abstinence in SE, we administered the GR antagonist mifepristone, and we investigated methamphetamine seeking.ResultsExposure to EE reduced methamphetamine seeking and reversed methamphetamine-induced increases in GR levels in the ventral and dorsal hippocampus. In addition, EE decreased GR levels in the amygdala in drug-naive animals, but this effect was prevented by previous exposure to methamphetamine. Administration of mifepristone significantly decreased methamphetamine seeking.ConclusionsThe anti-craving effects of EE are paralleled by restoration of methamphetamine-induced dysregulation of GR in the hippocampus. These results provide support for the hypothesis that the effect of EE on methamphetamine relapse is at least in part mediated by EE’s action on the brain stress system.
Journal Article
Psychostimulant drug effects on glutamate, Glx, and creatine in the anterior cingulate cortex and subjective response in healthy humans
2018
Prescription psychostimulants produce rapid changes in mood, energy, and attention. These drugs are widely used and abused. However, their effects in human neocortex on glutamate and glutamine (pooled as Glx), and key neurometabolites such as N-acetylaspartate (tNAA), creatine (tCr), choline (Cho), and myo-inositol (Ins) are poorly understood. Changes in these compounds could inform the mechanism of action of psychostimulant drugs and their abuse potential in humans. We investigated the acute impact of two FDA-approved psychostimulant drugs on neurometabolites using magnetic resonance spectroscopy (1H MRS). Single clinically relevant doses of d-amphetamine (AMP, 20 mg oral), methamphetamine (MA, 20 mg oral; Desoxyn®), or placebo were administered to healthy participants (n = 26) on three separate test days in a placebo-controlled, double-blinded, within-subjects crossover design. Each participant experienced all three conditions and thus served as his/her own control. 1H MRS was conducted in the dorsal anterior cingulate cortex (dACC), an integrative neocortical hub, during the peak period of drug responses (140–150 m post ingestion). D-amphetamine increased the level of Glu (p = .0001), Glx (p = .003), and tCr (p = .0067) in the dACC. Methamphetamine increased Glu in females, producing a significant crossover interaction pattern with gender (p = .02). Drug effects on Glu, tCr, and Glx were positively correlated with subjective drug responses, predicting both the duration of AMP liking (Glu: r = +.49, p = .02; tCr: r = +.41, p = .047) and the magnitude of peak drug high to MA (Glu: r = +.52, p = .016; Glx: r = +.42, p = .049). Neither drug affected the levels of tNAA, Cho, or Ins after correction for multiple comparisons. We conclude that d-amphetamine increased the concentration of glutamate, Glx, and tCr in the dACC in male and female volunteers 21/2 hours after drug consumption. There was evidence that methamphetamine differentially affects dACC Glu levels in women and men. These findings provide the first experimental evidence that specific psychostimulants increase the level of glutamatergic compounds in the human brain, and that glutamatergic changes predict the extent and magnitude of subjective responses to psychostimulants.
Journal Article
Acute Physiological and Behavioral Effects of Intranasal Methamphetamine in Humans
by
Gunderson, Erik W
,
Perez, Audrey
,
Foltin, Richard W
in
Administration, Intranasal
,
Adult
,
Amphetamine-Related Disorders - psychology
2008
Intranasal methamphetamine abuse has increased dramatically in the past decade, yet only one published study has investigated its acute effects under controlled laboratory conditions. Thus, the current study examined the effects of single-dose intranasal methamphetamine administration on a broad range of behavioral and physiological measures. Eleven nontreatment-seeking methamphetamine abusers (two females, nine males) completed this four-session, in-patient, within-participant, double-blind study. During each session, one of four intranasal methamphetamine doses (0, 12, 25, and 50 mg/70 kg) was administered and methamphetamine plasma concentrations, cardiovascular, subjective, and psychomotor/cognitive performance effects were assessed before drug administration and repeatedly thereafter. Following drug administration, methamphetamine plasma concentrations systematically increased for 4 h postdrug administration then declined. Methamphetamine dose dependently increased cardiovascular measures and ‘positive’ subjective effects, with peaks occurring approximately 5–15 min after drug administration, when plasma levels were still ascending. In addition, cognitive performance on less complicated tasks was improved by all active methamphetamine doses, whereas performance on more complicated tasks was improved only by the intermediate doses (12 and 25 mg). These results show that intranasal methamphetamine produced predictable effects on multiple behavioral and physiological measures before peak plasma levels were observed. Of interest is the dissociation between methamphetamine plasma concentrations with cardiovascular measures and positive subjective effects, which might have important implications for potential toxicity after repeated doses.
Journal Article
Subjective and Cardiovascular Effects of Intravenous Methamphetamine during Perindopril Maintenance: A Randomized, Double-Blind, Placebo-Controlled Human Laboratory Study
by
Verrico, Christopher D.
,
Grasing, Kenneth
,
Kosten, Thomas R.
in
Administration, Intravenous
,
Adolescent
,
Adult
2016
Background:Our pilot study suggested that the angiotensin-converting enzyme inhibitor perindopril might reduce some subjective effects produced by i.v. methamphetamine. We characterized the impact of a wider range of perindopril doses on methamphetamine-induced effects in a larger group of non-treatment-seeking, methamphetamine-using volunteers.Methods:Before treatment, participants received 30mg methamphetamine. After 5 to 7 days of perindopril treatment (0, 4, 8, or 16mg/d), participants received 15 and 30mg of methamphetamine on alternate days. Before and after treatment, participants rated subjective effects and cardiovascular measures were collected.Results:Prior to treatment with perindopril, there were no significant differences between treatment groups on maximum or peak subjective ratings or on peak cardiovascular effects. Following perindopril treatment, there were significant main effects of treatment on peak subjective ratings of “anxious” and “stimulated”; compared to placebo treatment, treatment with 8mg perindopril significantly reduced peak ratings of both anxious (P=.0009) and stimulated (P=.0070). There were no significant posttreatment differences between groups on peak cardiovascular effects.Conclusions:Moderate doses of perindopril (8mg) significantly reduced peak subjective ratings of anxious and stimulated as well as attenuated many other subjective effects produced by methamphetamine, likely by inhibiting angiotensin II synthesis. Angiotensin II is known to facilitate the effects of norepinephrine, which contributes to methamphetamine’s subjective effects. The lack of a classic dose-response function likely results from either nonspecific effects of perindopril or from between-group differences that were not accounted for in the current study (i.e., genetic variations and/or caffeine use). The current findings suggest that while angiotensin-converting enzyme inhibitors can reduce some effects produced by methamphetamine, more consistent treatment effects might be achieved by targeting components of the renin-angiotensin system that are downstream of angiotensin-converting enzyme.
Journal Article
MDMA and methamphetamine: some paradoxical negative and positive mood changes in an acute dose laboratory study
by
Owens, Katherine
,
Scholey, Andrew B.
,
Gibbs, Amy
in
Administration, Oral
,
Adult
,
Affect - drug effects
2011
Rationale
This study investigated the acute mood effects of oral MDMA, methamphetamine, and placebo in a double-blind laboratory study.
Methods
Fifty-two healthy participants comprised abstinent recreational users of stimulant drugs, 27 female and 25 male, mean age 24.8 years. Three test sessions involved acute 100 mg oral 3.4-methylendioxymethamphetamine (MDMA), 0.42 mg/kg oral methamphetamine, and matching placebo. Drug administration was counterbalanced, testing was double-blind, and medical supervision was present throughout. Car-driving performance on a laboratory simulator was assessed after 3 and 24 h, with the findings being presented elsewhere. Positive and negative moods (PANAS self-ratings) were completed before drug administration, 3, 4.5, and 24 h later. Blood samples were taken to monitor drug plasma levels.
Results
Following MDMA, there were no significant increases in positive moods, whereas negative moods were significantly higher than under placebo. Methamphetamine led to significant increases in both positive and negative moods. The MDMA findings contrast with the elated moods, typically noted by dance clubbers on Ecstasy. However, they are consistent with some previous laboratory findings, since a wide array of positive and negative mood changes have been demonstrated. One possible explanatory factor was the neutral environmental situation, particularly if a primary action of MDMA is to intensify ongoing psychological states. Other explanatory factors, such as dosage, gender, post-drug timing, neurohormonal aspects, and social factors, are also discussed.
Conclusions
In the laboratory, acute methamphetamine led to significantly higher positive moods. However, against expectations, MDMA did not generate a significant increase in positive moods.
Journal Article