Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
11,428 result(s) for "Methane - chemistry"
Sort by:
Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold
Since the first report of thiol-based self-assembled monolayers (SAMs) 30 years ago, these structures have been examined in a huge variety of applications. The oxidative and thermal instabilities of these systems are widely known, however, and are an impediment to their widespread commercial use. Here, we describe the generation of N-heterocyclic carbene (NHC)-based SAMs on gold that demonstrate considerably greater resistance to heat and chemical reagents than the thiol-based counterparts. This increased stability is related to the increased strength of the gold–carbon bond relative to that of a gold–sulfur bond, and to a different mode of bonding in the case of the carbene ligand. Once bound to gold, NHCs are not displaced by thiols or thioethers, and are stable to high temperatures, boiling water, organic solvents, pH extremes, electrochemical cycling above 0 V and 1% hydrogen peroxide. In particular, benzimidazole-derived carbenes provide films with the highest stabilities and evidence of short-range molecular ordering. Chemical derivatization can be employed to adjust the surface properties of NHC-based SAMs. Thiol-based self-assembled monolayers have a huge variety of potential applications but are hampered by oxidative and thermal instability. Now, N-heterocyclic carbenes are shown to form densely packed layers on Au(111) that are considerably more stable than thiol films, resisting hot organic solvents, acid, base, oxidant and oxidative electrohemical etching.
Metallaphotoredox-enabled deoxygenative arylation of alcohols
Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C–C bonds, particularly in the production of unsaturated scaffolds 1 . However, alkyl cross-couplings using native sp 3 -hybridized functional groups such as alcohols remain relatively underdeveloped 2 . In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C–O bonds 3 , but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners 4 . We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon–carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis. A metallaphotoredox-based cross-coupling platform is capable of activating a wide range of free alcohols using N-heterocyclic carbene salts, cleaving C–O bonds to form free carbon radicals that are then used to form new C–C bonds.
Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions
Anti-Markovnikov additions to alkenes have been a longstanding goal of catalysis, and anti-Markovnikov addition of arenes to alkenes would produce alkylarenes that are distinct from those formed by acid-catalysed processes. Existing hydroarylations are either directed or occur with low reactivity and low regioselectivity for the n-alkylarene. Herein, we report the first undirected hydroarylation of unactivated alkenes with unactivated arenes that occurs with high regioselectivity for the anti-Markovnikov product. The reaction occurs with a nickel catalyst ligated by a highly sterically hindered N-heterocyclic carbene. Catalytically relevant arene- and alkene-bound nickel complexes have been characterized, and the rate-limiting step was shown to be reductive elimination to form the C–C bond. Density functional theory calculations, combined with second-generation absolutely localized molecular orbital energy decomposition analysis, suggest that the difference in activity between catalysts containing large and small carbenes results more from stabilizing intramolecular non-covalent interactions in the secondary coordination sphere than from steric hindrance.The anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes has been achieved with high selectivity by using nickel catalysts bearing large N-heterocyclic carbene ligands. Energy decomposition analysis indicates that the high activity of the catalysts with large carbene ligands arises from stabilizing non-covalent interactions rather than steric effects.
N-formylation and N-methylation of amines using metal-free N-heterocyclic carbene catalysts and CO 2 as carbon source
N-formylation and N-methylation of amines are important reactions that are used to produce a wide range of key intermediates and compounds. This protocol describes the environmentally benign N-formylation and N-methylation of primary and secondary amines using carbon dioxide (CO ) as the carbon source, hydrosilanes as reductants and N-heterocyclic carbenes (NHCs) as catalysts. Using CO as a reagent has the advantage of low cost and negligible toxicity. However, the catalyst is air-sensitive and must be generated fresh before use; consequently, the techniques used to prepare and manipulate the catalyst are described. The synthetic approach described in this protocol does not use any toxic reagents; using the appropriate catalyst, N-formylated or N-methylated products can be obtained with high selectivity. The overall time for catalyst preparation and for conducting several catalytic reactions in parallel is 15-48 h, depending on the nature of the substrates.
Highly enantioselective carbene insertion into N–H bonds of aliphatic amines
Aliphatic amines strongly coordinate, and therefore easily inhibit, the activity of transition-metal catalysts, posing a marked challenge to nitrogen-hydrogen (N–H) insertion reactions. Here, we report highly enantioselective carbene insertion into N–H bonds of aliphatic amines using two catalysts in tandem: an achiral copper complex and chiral amino-thiourea. Coordination by a homoscorpionate ligand protects the copper center that activates the carbene precursor. The chiral amino-thiourea catalyst then promotes enantioselective proton transfer to generate the stereocenter of the insertion product. This reaction couples a wide variety of diazo esters and amines to produce chiral α-alkyl α–amino acid derivatives.
Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life
Enzymes that catalyze carbon-silicon bond formation are unknown in nature, despite the natural abundance of both elements. Such enzymes would expand the catalytic repertoire of biology, enabling living systems to access chemical space previously only open to synthetic chemistry. We have discovered that heme proteins catalyze the formation of organosilicon compounds under physiological conditions via carbene insertion into silicon-hydrogen bonds. The reaction proceeds both in vitro and in vivo, accommodating a broad range of substrates with high chemo- and enantioselectivity. Using directed evolution, we enhanced the catalytic function of cytochrome c from Rhodothermus marinus to achieve more than 15-fold higher turnover than state-of-the-art synthetic catalysts. This carbon-silicon bond-forming biocatalyst offers an environmentally friendly and highly efficient route to producing enantiopure organosilicon molecules.
California’s methane super-emitters
Methane is a powerful greenhouse gas and is targeted for emissions mitigation by the US state of California and other jurisdictions worldwide 1 , 2 . Unique opportunities for mitigation are presented by point-source emitters—surface features or infrastructure components that are typically less than 10 metres in diameter and emit plumes of highly concentrated methane 3 . However, data on point-source emissions are sparse and typically lack sufficient spatial and temporal resolution to guide their mitigation and to accurately assess their magnitude 4 . Here we survey more than 272,000 infrastructure elements in California using an airborne imaging spectrometer that can rapidly map methane plumes 5 – 7 . We conduct five campaigns over several months from 2016 to 2018, spanning the oil and gas, manure-management and waste-management sectors, resulting in the detection, geolocation and quantification of emissions from 564 strong methane point sources. Our remote sensing approach enables the rapid and repeated assessment of large areas at high spatial resolution for a poorly characterized population of methane emitters that often appear intermittently and stochastically. We estimate net methane point-source emissions in California to be 0.618 teragrams per year (95 per cent confidence interval 0.523–0.725), equivalent to 34–46 per cent of the state’s methane inventory 8 for 2016. Methane ‘super-emitter’ activity occurs in every sector surveyed, with 10 per cent of point sources contributing roughly 60 per cent of point-source emissions—consistent with a study of the US Four Corners region that had a different sectoral mix 9 . The largest methane emitters in California are a subset of landfills, which exhibit persistent anomalous activity. Methane point-source emissions in California are dominated by landfills (41 per cent), followed by dairies (26 per cent) and the oil and gas sector (26 per cent). Our data have enabled the identification of the 0.2 per cent of California’s infrastructure that is responsible for these emissions. Sharing these data with collaborating infrastructure operators has led to the mitigation of anomalous methane-emission activity 10 . Emission of methane from ‘point sources’—small surface features or infrastructure components—is monitored with an airborne spectrometer, identifying possible targets for mitigation efforts.
Catalytic activation of carbon–carbon bonds in cyclopentanones
In the chemical industry, it is often necessary to activate carbon–carbon bonds in order to synthesize complex organic molecules, but this is challenging when starting with simple five- or six-membered carbon rings; a new method uses a rhodium pre-catalyst and an amino-pyridine co-catalyst, enabling an overall energetically favourable reaction that involves activation of carbon–carbon bonds plus activation of carbon–hydrogen bonds. Access to tetralones Most molecules of interest to organic chemists are primarily made up of carbon skeletons, so carbon–carbon bond activation is of prime importance in making and modifying such molecules. Transition-metal-mediated carbon–carbon bond activation of cyclic carbon species is a versatile approach, but challenging for five- and six-membered rings because the lack of ring strain provides an insufficient driving force for the reaction. Now, Guangbin Dong and co-workers demonstrate a rhodium-catalysed activation of phenyl-functionalized unstrained cyclopentanones, giving rapid access to tetralones. In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon–carbon single bonds (C–C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 . The challenge in achieving such activation is the kinetic inertness of C–C bonds and the relative weakness of newly formed carbon–metal bonds 6 , 14 . The most common tactic starts with a three- or four-membered carbon-ring system 9 , 10 , 11 , 12 , 13 , in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C–C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C–C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N -heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C–C bond can be activated; this is followed by activation of a carbon–hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones—a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.
Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options
The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain-forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4-mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible.