Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
48,148 result(s) for "MiRNAs"
Sort by:
Challenges in microRNAs' targetome prediction and validation
MicroRNAs (miRNAs) are small RNA molecules with important roles in post-transcriptional regulation of gene expression. In recent years, the predicted number of miRNAs has skyrocketed, largely as a consequence of high-throughput sequencing technologies becoming ubiquitous. This dramatic increase in miRNA candidates poses multiple challenges in terms of data deposition, curation, and validation. Although multiple databases containing miRNA annotations and targets have been developed, ensuring data quality by validating miRNA-target interactions requires the efforts of the research community. In order to generate databases containing biologically active miRNAs, it is imperative to overcome a multitude of hurdles, including restricted miRNA expression patterns, distinct miRNA biogenesis machineries, and divergent miRNA-mRNA interaction dynamics. In the present review, we discuss recent advances and limitations in miRNA prediction, identification, and validation. Lastly, we focus on the most enriched neuronal miRNA, miR-124, and its gene regulatory network in human neurons, which has been revealed using a combined computational and experimental approach.
Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression
MicroRNAs (miRNAs) are a class of endogenous small noncoding RNAs that participate in a majority of biological processes via regulating target gene expression. The post-transcriptional repression through miRNA seed region binding to 3′ UTR of target mRNA is considered as the canonical mode of miRNA-mediated gene regulation. However, emerging evidence suggests that other regulatory modes exist beyond the canonical mechanism. In particular, the function of intranuclear miRNA in gene transcriptional regulation is gradually revealed, with evidence showing their contribution to gene silencing or activating. Therefore, miRNA-mediated regulation of gene transcription not only expands our understanding of the molecular mechanism underlying miRNA regulatory function, but also provides new evidence to explain its ability in the sophisticated regulation of many bioprocesses. In this review, mechanisms of miRNA-mediated gene transcriptional and post-transcriptional regulation are summarized, and the synergistic effects among these actions which form a regulatory network of a miRNA on its target are particularly elaborated. With these discussions, we aim to emphasize the importance of miRNA regulatory network on target gene regulation and further highlight the potential application of the network mode in the achievement of a more effective and stable modulation of the target gene expression.
The microRNA Pathway of Macroalgae: Its Similarities and Differences to the Plant and Animal microRNA Pathways
In plants and animals, the microRNA (miRNA) class of small regulatory RNA plays an essential role in controlling gene expression in all aspects of development, to respond to environmental stress, or to defend against pathogen attack. This well-established master regulatory role for miRNAs has led to each protein-mediated step of both the plant and animal miRNA pathways being thoroughly characterized. Furthermore, this degree of characterization has led to the development of a suite of miRNA-based technologies for gene expression manipulation for fundamental research or for use in industrial or medical applications. In direct contrast, molecular research on the miRNA pathway of macroalgae, specifically seaweeds (marine macroalgae), remains in its infancy. However, the molecular research conducted to date on the seaweed miRNA pathway has shown that it shares functional features specific to either the plant or animal miRNA pathway. In addition, of the small number of seaweed species where miRNA data is available, little sequence conservation of individual miRNAs exists. These preliminary findings show the pressing need for substantive research into the seaweed miRNA pathway to advance our current understanding of this essential gene expression regulatory process. Such research will also generate the knowledge required to develop novel miRNA-based technologies for use in seaweeds. In this review, we compare and contrast the seaweed miRNA pathway to those well-characterized pathways of plants and animals and outline the low degree of miRNA sequence conservation across the polyphyletic group known as the seaweeds.
Mihaela Zavolan
A better way to identify miRNA target sites.
Trials and Tribulations of MicroRNA Therapeutics
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients’ blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.