Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
657 result(s) for "Mice, Hairless"
Sort by:
Protective Effects of Kuding Tea (Ilex kudingcha C. J. Tseng) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice
In this study, the protective effects of Kuding tea polyphenols (KTPs) on ultraviolet B (UVB)-induced skin injury of SKH1 hairless mice were studied. The ion precipitation method was used for extraction of polyphenols from Kuding tea. High-performance liquid chromatography showed that KTPs contains chlorogenic acid, cryptochlorogenic acid, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C. SKH1 hairless mice were induced skin aging using 2.0 mW/s intensity of 90 mJ/cm2 UV light once a day for seven weeks. The 2.5% and 5% KTPs solution was smeared on 2 cm2 of back skin of skin aging mice twice a day. Mouse experiments showed that KTP strongly increased the serum levels of total superoxide dismutase (T-SOD) and catalase (CAT) and reduced those of malondialdehyde, interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α) in mice with UVB-induced skin damage. KTP also increased the levels of type 1 collagen (Col I), hydroxyproline, and hyaluronic acid and reduced those of Col III and hydrogen peroxide in the damaged skin tissues of mice. Pathological observations of tissues stained with H & E, Masson’s trichrome, Verhoeff, and toluidine blue showed that KTPs could protect skin cells, collagen, and elastin and decrease the number of mast cells, thus inhibiting skin damage. Quantitative PCR and western blot assays showed that KTP upregulated the mRNA and protein expression of tissue inhibitor of metalloproteinase 1 (TIMP-1), TIMP-2, copper/zinc-SOD, manganese-SOD, CAT, and glutathione peroxidase and downregulated the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. In addition, the same concentration of KTP had stronger protective effects than vitamin C. The results of this study demonstrate that KTPs have good skin protective effects, as they are able to inhibit UVB-induced skin damage.
Oral Centella asiatica Extract Attenuates UVB-Induced Skin Photoaging via Antioxidant, Anti-Inflammatory, and Extracellular Matrix-Preserving Effects in Hairless Mice
Centella asiatica exhibits antioxidant, anti-inflammatory, and dermal-regenerative activities, yet the in vivo efficacy of an orally administered, dose-standardized extract against ultraviolet B (UVB)-induced photoaging has not been fully elucidated. This study investigated the protective effects of a chemically standardized C. asiatica extract (sCAE; 70 mg/g asiaticoside) in UVB-irradiated Skh:HR-1 hairless mice. Animals received oral sCAE (40 or 80 mg/kg/day) for eight weeks during repeated UVB exposure. Comprehensive assessments—including skin biophysical measurements, histological analysis, ELISA, and gene expression profiling—were performed to characterize dose-dependent responses. sCAE significantly reduced wrinkle formation, transepidermal water loss, malondialdehyde accumulation, and pro-inflammatory cytokines, while enhancing skin hydration, elasticity, antioxidant enzyme activities, and collagen expression. It also restored hyaluronic acid, ceramide, and their biosynthetic genes, and suppressed matrix metalloproteinase-1 and -9. Notably, the higher dose (80 mg/kg) consistently shifted key parameters toward normal levels, demonstrating a clear dose–response effect. These findings provide the first integrative in vivo evidence that orally administered, asiaticoside-standardized C. asiatica extract mitigates UVB-induced photoaging by concurrently improving barrier lipids, extracellular matrix integrity, inflammation, and oxidative stress, supporting its potential as a nutricosmetic agent for skin health.
Echinochrome A Protects against Ultraviolet B-induced Photoaging by Lowering Collagen Degradation and Inflammatory Cell Infiltration in Hairless Mice
Echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone) has been known to exhibit anti-oxidative and anti-inflammatory effects. However, no study has been carried out on the efficacy of Ech A against skin photoaging; this process is largely mediated by oxidative stress. Six-week-old male SKH-1 hairless mice (n = 36) were divided into five groups. Except for a group that were not treated (n = 4), all mice underwent ultraviolet-B (UVB) exposure for 8 weeks while applying phosphate-buffered saline or Ech A through intraperitoneal injection. UVB impaired skin barrier function, showing increased transepidermal water loss and decreased stratum corneum hydration. UVB induced dermal collagen degeneration and mast cell infiltration. Ech A injection was found to significantly lower transepidermal water loss while attenuating tissue inflammatory changes and collagen degeneration compared to the control. Furthermore, Ech A was found to decrease the relative expression of matrix metalloproteinase, tryptase, and chymase. Taken together, these results suggest that Ech A protects against UVB-induced photoaging in both functional and histologic aspects, causing a lowering of collagen degradation and inflammatory cell infiltration.
Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in vitro and in vivo penetration through the skin
An ibuprofen-loaded nanostructured lipid carrier (IBU-NLC) was developed for enhanced skin penetration to improve the treatment of osteoarthritis and other musculoskeletal diseases. The mean particle size was 106 nm, with a spherical morphology, a smooth surface, and a zeta potential of -18.4 mV. X-ray diffraction studies revealed the amorphous state of the lipid matrix. Both Raman spectroscopy and Fourier transformation infrared analysis indicated no major shifts in the spectra of the formulations, which suggest rapid drug dissolution from the nanoparticles. The drug loading was 9.85%, and the entrapment efficiency was 98.51%. In vitro release of the NLC dispersion, in vitro permeation, and in vivo animal studies of IBU-NLC gel all confirmed that the permeation of IBU was significantly better than that of a reference after 6 hours. In conclusion, IBU-NLC gel is of great potential to enhance drug permeation through the skin and hence the efficacy of the treatment of chronic joint inflammation.
In Vivo Evaluation of the Wound Healing Activity of Extracts and Bioactive Constituents of the Marine Isopod Ceratothoa oestroides
Wound healing is a fundamental response to tissue injury and a number of natural products has been found to accelerate the healing process. Herein, we report the preparation of a series of different polarity (organic and aqueous) extracts of the marine isopod Ceratothoa oestroides and the in vivo evaluation of their wound healing activity after topical administration of ointments incorporating the various extracts on wounds inflicted on SKH-hr1 hairless mice. The most active extract was fractionated for enrichment in the bioactive constituents and the fractions were further evaluated for their wound healing activity, while their chemical profiles were analyzed. Wound healing was evaluated by clinical assessment, photo-documentation, histopathological analysis and measurement of biophysical skin parameters, such as transepidermal water loss (TEWL), hydration, elasticity, and skin thickness. The highest levels of activity were exerted by treatment of the wounds with a fraction rich in eicosapentaenoic acid (EPA), as well as myristic and palmitoleic acids. Topical application of the bioactive fraction on the wounds of mice resulted in complete wound closure with a skin of almost normal architecture without any inflammatory elements.
Protective effects of compounds from Garcinia mangostana L. (mangosteen) against UVB damage in HaCaT cells and hairless mice
Ultraviolet B (UVB) radiation causes alterations in the skin, such as epidermal thickening, wrinkle formation and inflammation. Therefore, preventing UVB-induced skin damage can promote general health among the human population. Garcinia mangostana L. (mangosteen) is a fruit that has become a popular botanical dietary supplement because of its perceived role in promoting overall health. The present study investigated the photoprotective effects of α-, β-, γ-mangostins and gartanin against UVB radiation using the HaCaT immortalized human keratinocyte cell line as an in vitro model and hairless mice as an in vivo model. UVB radiation increased the expression of matrix metalloproteinase (MMP)-1 and -9 and decreased the mRNA expression levels of involucrin, filaggrin and loricrin in HaCaT cells; however, these changes were attenuated by pretreating the cells with α-, β-, γ-mangostins and gartanin. Among these compounds, α-mangostin exhibited the greatest effects in reducing UVB-induced skin wrinkles, inhibited epidermal thickening in hairless mice in vivo. Exposure to UVB radiation increased the expression of MMPs and pro-inflammatory cytokines and activated mitogen-activated protein kinases in hairless mice, but these changes were attenuated by α-mangostin. The authors suggested that α-mangostin exerts anti-wrinkle and anti-aging properties.
Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin
Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.
Anti-photoaging effect of fermented agricultural by-products on ultraviolet B-irradiated hairless mouse skin
Processed products from agricultural produce generate a large number of agricultural by-products that contain a number of functional substances. These are often discarded owing to the lack of suitable processing methods. The present study investigated the anti-photoaging properties of fermented rice bran (FRB), soybean cake (FSB) and sesame seed cake (FSC) on ultraviolet B (UVB)-irradiated hairless mouse skin. Results indicated that the oral administration of FRB, FSB and FSC effectively inhibited the UVB irradiation-induced expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-3 and MMP-13. Reverse transcription-quantitative polymerase chain reaction results also demonstrated that FRB, FSB and FSC significantly inhibited the UVB-induced expression of the genes encoding tumor necrosis factor-α, inducible nitric oxide synthase, interleukin (IL)-6 and IL-1β when compared with the UVB-vehicle group (P<0.05). Additionally, collagen degradation and mast cell infiltration were reduced in hairless mouse skin. Furthermore, UVB-induced wrinkle formation was also significantly reduced in mouse skin compared with the UVB-vehicle group (P<0.05). These results reveal that fermented agricultural by-products may serve as potential functional materials with anti-photoaging activities.
Impact of UVR Exposure Pattern on Squamous Cell Carcinoma-A Dose–Delivery and Dose–Response Study in Pigmented Hairless Mice
Cumulative lifetime ultraviolet radiation (UVR) is an important factor in the development of squamous cell carcinoma. This study examines the impact of UVR exposure pattern on tumor development. Hairless C3.Cg/TifBomTac immunocompetent pigmented mice (n = 351) were irradiated with 12 standard erythema doses (SED)/week, given as 2 SED ×6, 3 SED ×4, 4 SED ×3, or 6 SED ×2 (dose–delivery study) or 0, 0.6, 1.2, 2, 3 or 4 SED ×3/week (dose–response study). All mice were irradiated until development of 3 tumors of 4 mm each. Pigmentation was measured once monthly. In the dose–delivery study, the median time until tumor development was independent of dose fractions. In the dose–response study, higher UVR doses resulted in faster tumor appearance. When the weekly UVR dose was decreased from 12 to 6 SED, the cumulative UVR dose needed for tumor development was reduced by 40%. In conclusion, delivery schedules of a fixed weekly UVR dose did not affect tumor development. When using different weekly UVR doses, longer time to tumor development was observed using lower UVR doses. Lower weekly UVR doses however resulted in lower cumulative UVR doses to induce tumors in hairless pigmented mice.
Effect of Electrospun Non-Woven Mats of Dibutyryl Chitin/Poly(Lactic Acid) Blends on Wound Healing in Hairless Mice
The aim of this study was to examine the proliferative ability of dibutyryl chitin (DBC) on scratch wounds in HaCaT keratinocytes and to evaluate the effect of nanoporous non-woven mat (DBCNFM) on skin wound healing in hairless mice using the advantages of DBCNFM, such as high porosity and high surface area to volume. The cell spreading activity of DBC was verified through a cell spreading assay in scratched human HaCaT keratinocytes. Scratch wound experiments showed that DBC notably accelerates the spreading rate of HaCaT keratinocytes in a dose dependent manner. The molecular aspects of the healing process were also investigated by hematoxylin & eosin staining of the healed skin, displaying the degrees of reepithelialization and immunostaining on extracellular matrix synthesis and remodeling of the skin. Topical application of DBCNFM significantly reduced skin wound rank scores and increased the skin remodeling of the wounded hairless mice in a dose dependent way. Furthermore, DBCNFM notably increased the expression of the type 1 collagen and filaggrin. These results demonstrate that DBC efficiently accelerates the proliferation of HaCaT keratinocytes and DBCNFM notably increases extracellular matrix synthesis on remodeling of the skin, and these materials are a good candidate for further evaluation as an effective wound healing agent.