Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,158 result(s) for "Mice, Inbred NOD"
Sort by:
Innate immune stimulation of whole blood reveals IFN-1 hyper-responsiveness in type 1 diabetes
Aims/hypothesisSelf-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1 IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate this.MethodsThe TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD mice were stimulated with CpG and monocyte gene expression was measured.ResultsMonocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1, as IFN-γ-driven responses were not significantly different.Conclusions/interpretationOur study identifies increased responsiveness to IFN-1 as a feature of both the NOD mouse model of autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for type 1 diabetes and used to evaluate the effects of therapies targeting this pathway.Data availabilityMouse gene expression data are found in the gene expression omnibus (GEO) repository, accession GSE146452 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452). Nanostring count data from the human experiments were deposited in the GEO repository, accession GSE146338 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia.
Circulating platelet-neutrophil aggregates characterize the development of type 1 diabetes in humans and NOD mice
Platelet-neutrophil aggregates (PNAs) facilitate neutrophil activation and migration and could underpin the recruitment of neutrophils to the pancreas during type 1 diabetes (T1D) pathogenesis. PNAs, measured by flow cytometry, were significantly elevated in the circulation of autoantibody-positive (Aab+) children and new-onset T1D children, as well as in pre-T1D (at 4 weeks and 10-12 weeks) and T1D-onset NOD mice, compared with relevant controls, and PNAs were characterized by activated P-selectin+ platelets. PNAs were similarly increased in pre-T1D and T1D-onset NOD isolated islets/insulitis, and immunofluorescence staining revealed increased islet-associated neutrophil extracellular trap (NET) products (myeloperoxidase [MPO] and citrullinated histones [CitH3]) in NOD pancreata. In vitro, cell-free histones and NETs induced islet cell damage, which was prevented by the small polyanionic drug methyl cellobiose sulfate (mCBS) that binds to histones and neutralizes their pathological effects. Elevated circulating PNAs could, therefore, act as an innate immune and pathogenic biomarker of T1D autoimmunity. Platelet hyperreactivity within PNAs appears to represent a previously unrecognized hematological abnormality that precedes T1D onset. In summary, PNAs could contribute to the pathogenesis of T1D and potentially function as a pre-T1D diagnostic.
THE NOD MOUSE: A Model of Immune Dysregulation
▪ Abstract  Autoimmunity is a complex process that likely results from the summation of multiple defective tolerance mechanisms. The NOD mouse strain is an excellent model of autoimmune disease and an important tool for dissecting tolerance mechanisms. The strength of this mouse strain is that it develops spontaneous autoimmune diabetes, which shares many similarities to autoimmune or type 1a diabetes (T1D) in human subjects, including the presence of pancreas-specific autoantibodies, autoreactive CD4 + and CD8 + T cells, and genetic linkage to disease syntenic to that found in humans. During the past ten years, investigators have used a wide variety of tools to study these mice, including immunological reagents and transgenic and knockout strains; these tools have tremendously enhanced the study of the fundamental disease mechanisms. In addition, investigators have recently developed a number of therapeutic interventions in this animal model that have now been translated into human therapies. In this review, we summarize many of the important features of disease development and progression in the NOD strain, emphasizing the role of central and peripheral tolerance mechanisms that affect diabetes in these mice. The information gained from this highly relevant model of human disease will lead to potential therapies that may alter the development of the disease and its progression in patients with T1D.
Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice
Inhibiting vascular endothelial growth factor (VEGF) is a therapeutic option in diabetic microangiopathy. However, VEGF is needed at physiological concentrations to maintain glomerular integrity; complete VEGF blockade has deleterious effects on glomerular structure and function. Anti-VEGF therapy in diabetes raises the challenge of reducing VEGF-induced pathology without accelerating endothelial cell injury. Heparan sulfate (HS) act as a co-receptor for VEGF. Calcium dobesilate (CaD) is a small molecule with vasoprotective properties that has been used for the treatment of diabetic microangiopathy. Preliminary evidence suggests that CaD interferes with HS binding sites of fibroblast growth factor. We therefore tested the hypotheses that (1) CaD inhibits VEGF signaling in endothelial cells, (2) that this effect is mediated via interference between CaD and HS, and (3) that CaD ameliorates diabetic nephropathy in a streptozotocin-induced diabetic mouse model by VEGF inhibition. We found that CaD significantly inhibited VEGF165-induced endothelial cell migration, proliferation, and permeability. CaD significantly inhibited VEGF165-induced phosphorylation of VEGFR-2 and suppressed the activity of VEGFR-2 mediated signaling cascades. The effects of CaD in vitro were abrogated by heparin, suggesting the involvement of heparin-like domain in the interaction with CaD. In addition, VEGF121, an isoform which does not bind to heparin, was not inhibited by CaD. Using the proximity ligation approach, we detected inhibition of interaction in situ between HS and VEGF and between VEGF and VEGFR-2. Moreover, CaD reduced VEGF signaling in mice diabetic kidneys and ameliorated diabetic nephropathy and neuropathy, suggesting CaD as a VEGF inhibitor without the negative effects of complete VEGF blockade and therefore could be useful as a strategy in treating diabetic nephropathy.
Hyperglycemia Induces Skin Barrier Dysfunctions with Impairment of Epidermal Integrity in Non-Wounded Skin of Type 1 Diabetic Mice
Diabetes causes skin complications, including xerosis and foot ulcers. Ulcers complicated by infections exacerbate skin conditions, and in severe cases, limb/toe amputations are required to prevent the development of sepsis. Here, we hypothesize that hyperglycemia induces skin barrier dysfunction with alterations of epidermal integrity. The effects of hyperglycemia on the epidermis were examined in streptozotocin-induced diabetic mice with/without insulin therapy. The results showed that dye leakages were prominent, and transepidermal water loss after tape stripping was exacerbated in diabetic mice. These data indicate that hyperglycemia impaired skin barrier functions. Additionally, the distribution of the protein associated with the tight junction structure, tight junction protein-1 (ZO-1), was characterized by diffuse and significantly wider expression in the diabetic mice compared to that in the control mice. In turn, epidermal cell number was significantly reduced and basal cells were irregularly aligned with ultrastructural alterations in diabetic mice. In contrast, the number of corneocytes, namely, denucleated and terminally differentiated keratinocytes significantly increased, while their sensitivity to mechanical stress was enhanced in the diabetic mice. We found that cell proliferation was significantly decreased, while apoptotic cells were comparable in the skin of diabetic mice, compared to those in the control mice. In the epidermis, Keratin 5 and keratin 14 expressions were reduced, while keratin 10 and loricrin were ectopically induced in diabetic mice. These data suggest that hyperglycemia altered keratinocyte proliferation/differentiation. Finally, these phenotypes observed in diabetic mice were mitigated by insulin treatment. Reduction in basal cell number and perturbation of the proliferation/differentiation process could be the underlying mechanisms for impaired skin barrier functions in diabetic mice.
Genetic Background and Kinetics Define Wound Bed Extracellular Vesicles in a Mouse Model of Cutaneous Injury
Extracellular vesicles (EVs) have an important role in mediating intercellular signaling in inflammation and affect the kinetics of wound healing, however, an understanding of the mechanisms regulating these responses remains limited. Therefore, we have focused on the use of cutaneous injury models in which to study the biology of EVs on the inflammatory phase of wound healing. For this, the foreign body response using sterile subcutaneous polyvinylalcohol (PVA) sponges is ideally suited for the parallel analysis of immune cells and EVs without the need for tissue dissociation, which would introduce additional variables. We have previously used this model to identify mediators of EV biogenesis, establishing that control of how EVs are made affects their payload and biological activity. These studies in normal mice led us to consider how conditions such as immunodeficiency and obsesity affect the profile of immune cells and EVs in this model using genetically defined mutant mice. Since EVs are intrinsically heterogenous in biological fluids, we have focused our studies on a novel technology, vesicle flow cytometry (vFC) to quantify changes in EVs in mouse models. Here, we show that myeloid-derived immune cells and EVs express proteins relevant in antigen presentation in PVA sponge implants that have distinct profiles in wildtype, immune-deficient (NOD scid) vs. diabetic (Leprdb) mice. Together, these results establish a foundation for the parallel analysis of both immune cells and EVs with technologies that begin to address the heterogeneity of intercellular communication in the wound bed.
Antibody repertoires in humanized NOD-scid-IL2Rγ(null) mice and human B cells reveals human-like diversification and tolerance checkpoints in the mouse
Immunodeficient mice reconstituted with human hematopoietic stem cells enable the in vivo study of human hematopoiesis. In particular, NOD-scid-IL2Rγ(null) engrafted mice have been shown to have reasonable levels of T and B cell repopulation and can mount T-cell dependent responses; however, antigen-specific B-cell responses in this model are generally poor. We explored whether developmental defects in the immunoglobulin gene repertoire might be partly responsible for the low level of antibody responses in this model. Roche 454 sequencing was used to obtain over 685,000 reads from cDNA encoding immunoglobulin heavy (IGH) and light (IGK and IGL) genes isolated from immature, naïve, or total splenic B cells in engrafted NOD-scid-IL2Rγ(null) mice, and compared with over 940,000 reads from peripheral B cells of two healthy volunteers. We find that while naïve B-cell repertoires in humanized mice are chiefly indistinguishable from those in human blood B cells, and display highly correlated patterns of immunoglobulin gene segment use, the complementarity-determining region H3 (CDR-H3) repertoires are nevertheless extremely diverse and are specific for each individual. Despite this diversity, preferential D(H)-J(H) pairings repeatedly occur within the CDR-H3 interval that are strikingly similar across all repertoires examined, implying a genetic constraint imposed on repertoire generation. Moreover, CDR-H3 length, charged amino-acid content, and hydropathy are indistinguishable between humans and humanized mice, with no evidence of global autoimmune signatures. Importantly, however, a statistically greater usage of the inherently autoreactive IGHV4-34 and IGKV4-1 genes was observed in the newly formed immature B cells relative to naïve B or total splenic B cells in the humanized mice, a finding consistent with the deletion of autoreactive B cells in humans. Overall, our results provide evidence that key features of the primary repertoire are shaped by genetic factors intrinsic to human B cells and are principally unaltered by differences between mouse and human stromal microenvironments.
Suppressive effects of the sodium-glucose cotransporter 2 inhibitor tofogliflozin on colorectal tumorigenesis in diabetic and obese mice
Sodium-glucose cotransporter 2 inhibitors were developed for the treatment of diabetes mellitus. Although recent studies have indicated that sodium-glucose cotransporter 2 inhibitors have suppressive effects on several types of cancer, their effects against colorectal cancer remain unknown. The purpose of the present study was to investigate the effects of tofogliflozin, a sodium-glucose cotransporter 2 inhibitor, on the development of colorectal cancer in diabetic and obese mice. The direct effects of tofogliflozin on the proliferation of colorectal cancer cells were also evaluated. C57BL/KsJ-db/db mice were injected with azoxymethane to induce colorectal pre-malignancy and they received drinking water with or without tofogliflozin. At the end of the study, administration of tofogliflozin was revealed to significantly suppress the development of colorectal neoplastic lesions and β-catenin accumulated crypts. In the tofogliflozin-treated mice, the levels of blood glucose and serum TNF-α, as well as mRNA expression of the pro-inflammatory markers in the white adipose tissue, were reduced. Furthermore, macrophage infiltrations in the white adipose tissues were also reduced significantly. The proliferation of the sodium-glucose cotransporter 2-expressing human colorectal cancer cells was not altered by tofogliflozin. These results indicated that tofogliflozin ameliorated chronic inflammation and hyperglycemic condition leading to prevention of colorectal tumorigenesis in a diabetes- and obesity-related colorectal cancer model.
Stimulating β-Cell Regeneration by Combining a GPR119 Agonist with a DPP-IV Inhibitor
Activating G-protein coupled receptor 119 (GPR119) by its agonists can stimulate glucagon like peptide-1 (GLP-1) release. GLP-1 is rapidly degraded and inactivated by dipeptidylpeptidase-IV (DPP-IV). We studied the efficiency of combining PSN632408, a GPR119 agonist, with sitagliptin, a DPP-IV inhibitor, on β-cell regeneration in diabetic mice. Diabetes in C57BL/6 mice was induced by streptozotocin. PSN632408 and sitagliptin alone or in combination were administered to diabetic mice for 7 weeks along with BrdU daily. Nonfasting blood glucose levels were monitored. After treatment, oral glucose tolerance test (OGTT), plasma active GLP-1 levels, β-cell mass along with α- and β-cell replication, and β-cell neogenesis were evaluated. Normoglycemia was not achieved in vehicle-treated mice. By contrast, 32% (6 of 19) of PSN632408-treated diabetic mice, 36% (5 of 14) sitagliptin-treated diabetic mice, and 59% (13 of 22) diabetic mice treated with PSN632408 and sitagliptin combination achieved normoglycemia after 7 weeks treatment. Combination therapy significantly increased plasma active GLP-1 levels, improved glucose clearance, stimulated both α- and β-cell replication, and augmented β-cell mass. Furthermore, treatment with combination therapy induced β-cell neogenesis from pancreatic duct-derived cells. Our results demonstrate that combining a GPR119 agonist with a DPP-IV inhibitor may offer a novel therapeutic strategy for stimulating β-cell regeneration and reversing diabetes.
Targeting the Splicing of mRNA in Autoimmune Diseases: BAFF Inhibition in Sjögren's Syndrome as a Proof of Concept
BAFF (B-cell–activating factor of the tumor necrosis factor family), a pivotal cytokine for B-cell activation, is overexpressed by salivary gland (SG) epithelial cells in primary Sjogren's syndrome (pSS). ΔBAFF, a physiological inhibitor of BAFF, is a minor alternative splice variant of BAFF. A U7 RNA was reengineered to deliver antisense sequences targeting BAFF splice regions. A major decrease of BAFF messenger RNA (mRNA) and protein secretion, concomitantly with the increase of ΔBAFF mRNA, was observed in vitro. In vivo, SG retrograd instillation of nonobese diabetic mice by the modified U7 cloned into an adeno-associated virus vector significantly decreased BAFF protein expression and lymphocytic infiltrates and improved salivary flow. This study offers a rationale for localized therapeutic BAFF inhibition in pSS and represents a proof of concept of the interest of exon skipping in autoimmune diseases.