Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,709 result(s) for "MicroRNAs - physiology"
Sort by:
Neuronally-enriched exosomal microRNA-27b mediates acute effects of ibuprofen on reward-related brain activity in healthy adults: a randomized, placebo-controlled, double-blind trial
This double-blind, randomized, within-subjects design evaluated whether acute administration of an anti-inflammatory drug modulates neuron-specific, inflammation-modulating microRNAs linked to macroscopic changes in reward processing. Twenty healthy subjects (10 females, 10 males) underwent a functional magnetic resonance imaging scan while performing a monetary incentive delay (MID) task and provided blood samples after administration of placebo, 200 mg, or 600 mg of ibuprofen. Neuronally-enriched exosomal microRNAs were extracted from serum and sequenced. Results showed that: (1) 600 mg of ibuprofen exhibited higher miR-27b-3p, miR-320b, miR-23b and miR-203a-3p expression than placebo; (2) higher mir-27b-3p was associated with lower insula activation during MID loss anticipation; and (3) there was an inverse relationship between miR-27b-3p and MID gain anticipation in bilateral putamen during placebo, a pattern attenuated by both 200 mg and 600 mg of ibuprofen. These findings are consistent with the hypothesis that miR-27b could be an important messaging molecule that is associated with regulating the processing of positive or negative valenced information.
The miRNAome of ramie (Boehmeria nivea L.): identification, expression, and potential roles of novel microRNAs in regulation of cadmium stress response
Background MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie ( Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation. Results Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie. Conclusions This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.
MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.
Aerobic training improves platelet function in type 2 diabetic patients: role of microRNA-130a and GPIIb
AimsMicroRNAs (miRs) that are mediators of gene expression have been implicated in type 2 diabetes mellitus (T2DM). Platelet hyper-reactivity is one of the most important disorders in T2DM patients. In this study, we explored the effects of aerobic training (AT) on platelet aggregation and Glycoprotein IIb (GPIIb) receptor and miR-130a expression.MethodsIn a quasi-experimental controlled trial, 24 sedentary, eligible female participants with T2DM were selected (age 61.92 ± 3.63) and divided into AT and control (CON) groups based on their peak oxygen consumption (VO2peak). AT protocol was performed three times per week in non-consecutive days on a treadmill with mean intensity (60–75% VO2peak) for 8 weeks, while the control group refrained from any type of exercise training. Two blood samples were taken before and after this period. Real-time PCR was used to determine the expression of platelet GPIIb and miR-130a. Moreover, platelet indices (PLT, MPV, PDW, and PCT), collagen-induced platelet aggregation and glycemic variables were measured.ResultsAnalyses of data showed that anthropometric variables, VO2peak and glycemic control improved significantly (P < 0.01) after AT. Furthermore, MPV, PDW (P < 0.01), and platelet aggregation (P < 0.001) decreased significantly following AT compared with control group. Platelet GPIIb expression down-regulated significantly (P < 0.05) in AT group but up-regulation of miR-130a expression was not significant between two groups (P > 0.05).ConclusionsPlatelet hyper-reactivity in T2DM females might be decreased not only by glycemic control and amelioration of anthropometric and platelet indices, but also the down-regulation of GPIIb following AT. However, more research is needed to determine the effects of exercise training on platelet miR-130a.
microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1
Background Breast cancer is the most common cancer type in female. As microRNAs play vital role in breast cancer, this study aimed to explore the molecular mechanism and clinical value of miR-21 in breast cancer. Methods qRT-PCR was performed to detect miR-21 levels in plasma of 127 healthy controls, 82 benign breast tumor, 252 breast cancer patients, as well as in breast cancer cell lines. Transwell and wound healing assay were used to analyze breast cancer metastasis in response to miR-21 inhibitor. Colony formation and eFluor™ 670 based flow cytometric analysis were used to test breast cancer proliferation following miR-21 inhibitor treatment. Leucine zipper transcription factor-like 1 (LZTFL1), the target gene of miR-21 was predicted by MIRDB, TargetScan 5.1, PicTar and miRanda. Survival analysis of LZTFL1 levels in breast cancer prognosis was estimated with the Kaplan–Meier method by log-rank test according to data from the Cancer Genome Atlas. Luciferase activity assay was performed to confirm the regulation of miR-21 on LZTFL1. LZTFL1 siRNA and miR-21 inhibitor were co-transfected to breast cancer cells, then cell proliferation, migration and epithelial–mesenchymal transition (EMT) makers were tested. BALB/c nude mice were injected in situ with Hs578T cells stably overexpressing miR-21. Breast tumor growth, metastasis and the expression of EMT markers or LZTFL1 were detected in vivo. Results Plasma miR-21 levels were elevated in breast cancer patients compared with healthy controls and benign breast tumor patients, and the miR-21 levels were significantly decreased after surgery comparing with pre operation in 44 patients. Inhibition of miR-21 suppressed cell proliferation and metastasis in breast cancer cells. LZTFL1 was identified as a novel target gene of miR-21. Knockdown of LZTFL1 overcame the suppression of miR-21 inhibitor on cell proliferation, metastasis and the expression of EMT markers in breast cancer cells. miR-21 overexpression promoted breast cancer cell proliferation and metastasis in vivo. Conclusions These results indicate that plasma miR-21 level is a crucial biomarker for breast cancer diagnosis and targeting miR-21–LZTFL1–EMT axis might be a promising strategy in breast cancer therapy. Trial registration Retrospectively registered.
MicroRNAome genome: A treasure for cancer diagnosis and therapy
The interplay between abnormalities in genes coding for proteins and noncoding microRNAs (miRNAs) has been among the most exciting yet unexpected discoveries in oncology over the last decade. The complexity of this network has redefined cancer research as miRNAs, produced from what was once considered \"genomic trash,\" have shown to be crucial for cancer initiation, progression, and dissemination. Naturally occurring miRNAs are very short transcripts that never produce a protein or amino acid chain, but act by regulating protein expression during cellular processes such as growth, development, and differentiation at the transcriptional, posttranscriptional, and/or translational level. In this review article, miRNAs are presented as ubiquitous players involved in all cancer hallmarks. The authors also describe the most used methods to detect their expression, which have revealed the identity of hundreds of miRNAs dysregulated in cancer cells or tumor microenvironment cells. Furthermore, the role of miRNAs as hormones and as reliable cancer biomarkers and predictors of treatment response is discussed. Along with this, the authors explore current strategies in designing miRNA-targeting therapeutics, as well as the associated challenges that research envisions to overcome. Finally, a new wave in molecular oncology translational research is introduced: the study of long noncoding RNAs.
Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene
Small RNAs (sRNAs), an important type of pathogenicity factor, contribute to impairing host immune responses. However, little is known about sRNAs in Puccinia striiformis f. sp. tritici (Pst), one of the most destructive pathogens of wheat (Triticum aestivum L.). Here, we report a novel microRNA-like RNA (milRNA) from Pst termed microRNA-like RNA 1 (Pst milR1), which suppresses wheat defenses during wheat–Pst interactions. We identified Pst-milR1 as a novel milRNA in Pst. Biological prediction and co-transformation showed that Pst-milR1 takes part in cross-kingdom RNA interference (RNAi) events by binding the wheat pathogenesis-related 2 (PR2) gene. Silencing of the Pst-milR1 precursor resulted in increased wheat resistance to the virulent Pst isolate CYR31. PR2 knock-down plants increased the susceptibility of wheat to the avirulent Pst isolate CYR23. This suggests that Pst-milR1 represses the plant immune response by suppressing the expression of PR2. Taking our findings together, we postulate that Pst-milR1 is an important pathogenicity factor in Pst, which acts as an effector to suppress host immunity. Our results provide significant new insights into the pathogenicity of the stripe rust pathogen.
Therapeutic targeting of microRNAs: current status and future challenges
Key Points MicroRNAs (miRNAs) have important roles in many aspects of human diseases, and their targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through a variety of methods and chemically modified antisense oligonucleotides (anti-miRs) have shown the most prominent effects. Targeted delivery of anti-miRs is crucial to achieve intended therapeutic effects, and further efforts are warranted to develop more efficient delivery systems. MicroRNAs (miRNAs) — 21- to 23-nucleotide single-stranded RNAs that regulate gene expression — have roles in numerous diseases, and are therefore attractive therapeutic targets. Li and Rana discuss strategies in the design of miRNA-targeting oligonucleotides with increased efficacy and improved in vivo delivery characteristics, and highlight some of the challenges that lie ahead in the clinical development of these therapeutics. MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that have crucial roles in regulating gene expression. Increasing evidence supports a role for miRNAs in many human diseases, including cancer and autoimmune disorders. The function of miRNAs can be efficiently and specifically inhibited by chemically modified antisense oligonucleotides, supporting their potential as targets for the development of novel therapies for several diseases. In this Review we summarize our current knowledge of the design and performance of chemically modified miRNA-targeting antisense oligonucleotides, discuss various in vivo delivery strategies and analyse ongoing challenges to ensure the specificity and efficacy of therapeutic oligonucleotides in vivo . Finally, we review current progress on the clinical development of miRNA-targeting therapeutics.
MiR-137: an important player in neural development and neoplastic transformation
MicroRNAs (miRNAs) represent an important class of small regulatory RNAs that control gene expression posttranscriptionally by targeting mRNAs for degradation or translation inhibition. Early studies have revealed a complex role for miRNAs in major biological processes such as development, differentiation, growth and metabolism. MiR-137 in particular, has been of great interest due to its critical role in brain function and putative involvement in the etiology of both neuropsychiatric disorders and cancer. Several lines of evidence suggest that development, differentiation and maturation of the nervous system is strongly linked to the expression of miR-137 and its regulation of a large number of downstream target genes in various pathways. Dysregulation of this molecule has also been implicated in major mental illnesses through its position in a variant allele highly associated with schizophrenia in the largest mega genome-wide association studies. Interestingly, miR-137 has also been shown to act as a tumor suppressor, with numerous studies finding reduced expression in neoplasia including brain tumor. Restoration of miR-137 expression has also been shown to inhibit cell proliferation, migration and metastasis, and induce cell cycle arrest, differentiation and apoptosis. These properties of miR-137 propose its potential for prognosis, diagnosis and as a therapeutic target for treatment of several human neurological and neoplastic disorders. In this review, we provide details on the discovery, targets, function, regulation and disease involvement of miR-137 with a broad look at recent discovery in this area.
MicroRNAs: the fine-tuners of Toll-like receptor signalling
Key Points Multiple microRNAs (miRNAs) are induced by Toll-like receptor (TLR) signalling and regulate the expression of TLR signalling components and TLR-induced cytokines. TLR-induced miRNAs can influence the innate inflammatory response and have a role in priming of the adaptive immune system. Notable examples of TLR-induced miRNAs are miR-146a, which targets IL-1R-associated kinase 1 (IRAK1) and TNFR-associated factor 6 (TRAF6); miR-155, which targets the negative regulator Src homology 2 (SH2) domain-containing inositol-5′-phosphatase 1 (SHIP1); and miR-21, which targets the interleukin-10 (IL-10) suppressor molecule programmed cell death 4 (PDCD4). miRNAs function as fine-tuners of the inflammatory response and have a role in the resolution of inflammation. Part of the anti-inflammatory effect of IL-10 might be a result of the selective inhibition of miR-155 induced by TLR signalling. Aberrant expression of TLR-specific miRNAs is associated with inflammatory diseases such as rheumatoid arthritis. Toll-like receptors (TLRs) are central to the induction of pro-inflammatory responses, but their signalling pathways must be tightly regulated. As discussed in this article, an emerging level of fine-tuning is mediated by microRNAs, several of which are induced by TLR signalling. Toll-like receptor (TLR) signalling must be tightly regulated to avoid excessive inflammation and to allow for tissue repair and the return to homeostasis after infection and tissue injury. MicroRNAs (miRNAs) have emerged as important controllers of TLR signalling. Several miRNAs are induced by TLR activation in innate immune cells and these and other miRNAs target the 3′ untranslated regions of mRNAs encoding components of the TLR signalling system. miRNAs are also proving to be an important link between the innate and adaptive immune systems, and their dysregulation might have a role in the pathogenesis of inflammatory diseases.