Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,626 result(s) for "Microarray Analysis - statistics "
Sort by:
A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts
Stratification of asthma at the molecular level, especially using accessible biospecimens, could greatly enable patient selection for targeted therapy. To determine the value of blood analysis to identify transcriptional differences between clinically defined asthma and nonasthma groups, identify potential patient subgroups based on gene expression, and explore biological pathways associated with identified differences. Transcriptomic profiles were generated by microarray analysis of blood from 610 patients with asthma and control participants in the U-BIOPRED (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes) study. Differentially expressed genes (DEGs) were identified by analysis of variance, including covariates for RNA quality, sex, and clinical site, and Ingenuity Pathway Analysis was applied. Patient subgroups based on DEGs were created by hierarchical clustering and topological data analysis. A total of 1,693 genes were differentially expressed between patients with severe asthma and participants without asthma. The differences from participants without asthma in the nonsmoking severe asthma and mild/moderate asthma subgroups were significantly related (r = 0.76), with a larger effect size in the severe asthma group. The majority of, but not all, differences were explained by differences in circulating immune cell populations. Pathway analysis showed an increase in chemotaxis, migration, and myeloid cell trafficking in patients with severe asthma, decreased B-lymphocyte development and hematopoietic progenitor cells, and lymphoid organ hypoplasia. Cluster analysis of DEGs led to the creation of subgroups among the patients with severe asthma who differed in molecular responses to oral corticosteroids. Blood gene expression differences between clinically defined subgroups of patients with asthma and individuals without asthma, as well as subgroups of patients with severe asthma defined by transcript profiles, show the value of blood analysis in stratifying patients with asthma and identifying molecular pathways for further study. Clinical trial registered with www.clinicaltrials.gov (NCT01982162).
American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants
Genomic microarrays used to assess DNA copy number are now recommended as first-tier tests for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Application of this technology has resulted in the discovery of widespread copy number variation in the human genome, both polymorphic variation in healthy individuals and novel pathogenic copy number imbalances. To assist clinical laboratories in the evaluation of copy number variants and to promote consistency in interpretation and reporting of genomic microarray results, the American College of Medical Genetics has developed the following professional guidelines for the interpretation and reporting of copy number variation. These guidelines apply primarily to evaluation of constitutional copy number variants detected in the postnatal setting.
Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods
The expression microarray is a frequently used approach to study gene expression on a genome-wide scale. However, the data produced by the thousands of microarray studies published annually are confounded by \"batch effects,\" the systematic error introduced when samples are processed in multiple batches. Although batch effects can be reduced by careful experimental design, they cannot be eliminated unless the whole study is done in a single batch. A number of programs are now available to adjust microarray data for batch effects prior to analysis. We systematically evaluated six of these programs using multiple measures of precision, accuracy and overall performance. ComBat, an Empirical Bayes method, outperformed the other five programs by most metrics. We also showed that it is essential to standardize expression data at the probe level when testing for correlation of expression profiles, due to a sizeable probe effect in microarray data that can inflate the correlation among replicates and unrelated samples.
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel
A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or ‘scaffold’) of haplotypes across each chromosome. We then phase the sequence data ‘onto’ this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. 1000 Genomes imputation can increase the power of genome-wide association studies to detect genetic variants associated with human traits and diseases. Here, the authors develop a method to integrate and analyse low-coverage sequence data and SNP array data, and show that it improves imputation performance.
dbDEMC: a database of differentially expressed miRNAs in human cancers
Background MicroRNAs (miRNAs) are small noncoding RNAs about 22 nt long that negatively regulate gene expression at the post-transcriptional level. Their key effects on various biological processes, e.g., embryonic development, cell division, differentiation and apoptosis, are widely recognized. Evidence suggests that aberrant expression of miRNAs may contribute to many types of human diseases, including cancer. Here we present a database of differentially expressed miRNAs in human cancers (dbDEMC), to explore aberrantly expressed miRNAs among different cancers. Results We collected the miRNA expression profiles of 14 cancer types, curated from 48 microarray data sets in peer-reviewed publications. The Significance Analysis of Microarrays method was used to retrieve the miRNAs that have dramatically different expression levels in cancers when compared to normal tissues. This database provides statistical results for differentially expressed miRNAs in each data set. A total of 607 differentially expressed miRNAs (590 mature miRNAs and 17 precursor miRNAs) were obtained in the current version of dbDEMC. Furthermore, low-throughput data from the same literature were also included in the database for validation. An easy-to-use web interface was designed for users. Annotations about each miRNA can be queried through miRNA ID or miRBase accession numbers, or can be browsed by different cancer types. Conclusions This database is expected to be a valuable source for identification of cancer-related miRNAs, thereby helping with the improvement of classification, diagnosis and treatment of human cancers. All the information is freely available through http://159.226.118.44/dbDEMC/index.html .
The difference between karyotype analysis and chromosome microarray for mosaicism of aneuploid chromosomes in prenatal diagnosis
Objective To compare karyotype and chromosomal microarray (CMA) analysis of aneuploid chromosome mosaicism in amniocentesis samples. Materials and methods A total of 2091 amniocentesis samples from pregnant women were collected from March 1, 2019, to January 31, 2020. Karyotype analysis was performed using G‐banding and CMA analysis used the Affymetrix CytoScan 750K SNP microarray. Result Thirteen cases with aneuploid chromosome mosaicism were detected and compared between the karyotype and CMA methods. Seven of these cases were trisomic mosaicism, and the levels of mosaicism calculated from CMA were higher than those detected from karyotype analysis; noting three cases of trisomy mosaicism were not detected by karyotype analysis. Four cases exhibited monomeric mosaicism, and the levels of mosaicism detected in three of these cases were higher in karyotype compared with CMA analysis; one case had equivalent levels of monomeric mosaicism from both karyotype and CMA analysis. Two other cases from karyotype analysis were a mix of monosomic and trisomic mosaicism, whereas the CMA result was restricted to monosomic mosaicism for these cases. Conclusion Both karyotype and CMA analysis can be used to detect aneuploid chromosome mosaicism. However, the two methods produced different results. CMA and karyotype analysis have their own advantages in detecting aneuploid mosaicism, and the combination of these methods provides a more rigorous diagnosis.
Subpathway Analysis based on Signaling-Pathway Impact Analysis of Signaling Pathway
Pathway analysis is a common approach to gain insight from biological experiments. Signaling-pathway impact analysis (SPIA) is one such method and combines both the classical enrichment analysis and the actual perturbation on a given pathway. Because this method focuses on a single pathway, its resolution generally is not very high because the differentially expressed genes may be enriched in a local region of the pathway. In the present work, to identify cancer-related pathways, we incorporated a recent subpathway analysis method into the SPIA method to form the \"sub-SPIA method.\" The original subpathway analysis uses the k-clique structure to define a subpathway. However, it is not sufficiently flexible to capture subpathways with complex structure and usually results in many overlapping subpathways. We therefore propose using the minimal-spanning-tree structure to find a subpathway. We apply this approach to colorectal cancer and lung cancer datasets, and our results show that sub-SPIA can identify many significant pathways associated with each specific cancer that other methods miss. Based on the entire pathway network in the Kyoto Encyclopedia of Genes and Genomes, we find that the pathways identified by sub-SPIA not only have the largest average degree, but also are more closely connected than those identified by other methods. This result suggests that the abnormality signal propagating through them might be responsible for the specific cancer or disease.
Parallel Clustering Algorithm for Large-Scale Biological Data Sets
Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.
A Regression Framework for Assessing Covariate Effects on the Reproducibility of High-Throughput Experiments
The outcome of high-throughput biological experiments is affected by many operational factors in the experimental and data-analytical procedures. Understanding how these factors affect the reproducibility of the outcome is critical for establishing workflows that produce replicable discoveries. In this article, we propose a regression framework, based on a novel cumulative link model, to assess the covariate effects of operational factors on the reproducibility of findings from high-throughput experiments. In contrast to existing graphical approaches, our method allows one to succinctly characterize the simultaneous and independent effects of covariates on reproducibility and to compare reproducibility while controlling for potential confounding variables. We also establish a connection between our model and certain Archimedean copula models. This connection not only offers our regression framework an interpretation in copula models, but also provides guidance on choosing the functional forms of the regression. Furthermore, it also opens a new way to interpret and utilize these copulas in the context of reproducibility. Using simulations, we show that our method produces calibrated type I error and is more powerful in detecting difference in reproducibility than existing measures of agreement. We illustrate the usefulness of our method using a ChIP-seq study and a microarray study.
Concordance analysis of microarray studies identifies representative gene expression changes in Parkinson’s disease: a comparison of 33 human and animal studies
Background As the popularity of transcriptomic analysis has grown, the reported lack of concordance between different studies of the same condition has become a growing concern, raising questions as to the representativeness of different study types, such as non-human disease models or studies of surrogate tissues, to gene expression in the human condition. Methods In a comparison of 33 microarray studies of Parkinson’s disease, correlation and clustering analyses were used to determine the factors influencing concordance between studies, including agreement between different tissue types, different microarray platforms, and between neurotoxic and genetic disease models and human Parkinson’s disease. Results Concordance over all studies is low, with correlation of only 0.05 between differential gene expression signatures on average, but increases within human patients and studies of the same tissue type, rising to 0.38 for studies of human substantia nigra. Agreement of animal models, however, is dependent on model type. Studies of brain tissue from Parkinson’s disease patients (specifically the substantia nigra) form a distinct group, showing patterns of differential gene expression noticeably different from that in non-brain tissues and animal models of Parkinson’s disease; while comparison with other brain diseases (Alzheimer’s disease and brain cancer) suggests that the mixed study types display a general signal of neurodegenerative disease. A meta-analysis of these 33 microarray studies demonstrates the greater ability of studies in humans and highly-affected tissues to identify genes previously known to be associated with Parkinson’s disease. Conclusions The observed clustering and concordance results suggest the existence of a ‘characteristic’ signal of Parkinson’s disease found in significantly affected human tissues in humans. These results help to account for the consistency (or lack thereof) so far observed in microarray studies of Parkinson’s disease, and act as a guide to the selection of transcriptomic studies most representative of the underlying gene expression changes in the human disease.