Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,898 result(s) for "Microbalances"
Sort by:
Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air
Conventional SO 2 scrubbing agents, namely calcium oxide and zeolites, are often used to remove SO 2 using a strong or irreversible adsorption-based process. However, adsorbents capable of sensing and selectively capturing this toxic molecule in a reversible manner, with in-depth understanding of structure–property relationships, have been rarely explored. Here we report the selective removal and sensing of SO 2 using recently unveiled fluorinated metal–organic frameworks (MOFs). Mixed gas adsorption experiments were performed at low concentrations ranging from 250 p.p.m. to 7% of SO 2 . Direct mixed gas column breakthrough and/or column desorption experiments revealed an unprecedented SO 2 affinity for KAUST-7 (NbOFFIVE-1-Ni) and KAUST-8 (AlFFIVE-1-Ni) MOFs. Furthermore, MOF-coated quartz crystal microbalance transducers were used to develop sensors with the ability to detect SO 2 at low concentrations ranging from 25 to 500 p.p.m. Removal of SO 2 from flue gas is of prime importance to avoid its poisoning of CO 2 -seperating agents. Here, the authors demonstrate that two fluorinated metal–organic frameworks selectively remove SO 2 from synthetic flue gas and can sense SO 2 with p.p.m.-level detection using quartz crystal microbalance transducers.
In situ quantification of interphasial chemistry in Li-ion battery
The solid–electrolyte interphase (SEI) is probably the least understood component in Li-ion batteries. Considerable effort has been put into understanding its formation and electrochemistry under realistic battery conditions, but mechanistic insights have mostly been inferred indirectly. Here we show the formation of the SEI between a graphite anode and a carbonate electrolyte through combined atomic-scale microscopy and in situ and operando techniques. In particular, we weigh the graphitic anode during its initial lithiation process with an electrochemical quartz crystal microbalance, which unequivocally identifies lithium fluoride and lithium alkylcarbonates as the main chemical components at different potentials. In situ gas analysis confirms the preferential reduction of cyclic over acyclic carbonate molecules, making its reduction product the major component in the SEI. We find that SEI formation starts at graphite edge sites with dimerization of solvated Li+ intercalation between graphite layers. We also show that this lithium salt, at least in its nascent form, can be re-oxidized, despite the general belief that an SEI is electrochemically inert and its formation irreversible.
Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)
Understanding the local electrochemical processes is of key importance for efficient energy storage applications, including electrochemical double layer capacitors. In this work, we studied the charge storage mechanism of a model material - reduced graphene oxide (rGO) - in aqueous electrolyte using the combination of cavity micro-electrode, operando electrochemical quartz crystal microbalance (EQCM) and operando electrochemical dilatometry (ECD) tools. We evidence two regions with different charge storage mechanisms, depending on the cation-carbon interaction. Notably, under high cathodic polarization (region II), we report an important capacitance increase in Zn 2+ containing electrolyte with minimum volume expansion, which is associated with Zn 2+ desolvation resulting from strong electrostatic Zn 2+ -rGO interactions. These results highlight the significant role of ion-electrode interaction strength and cation desolvation in modulating the charging mechanisms, offering potential pathways for optimized capacitive energy storage. As a broader perspective, understanding confined electrochemical systems and the coupling between chemical, electrochemical and transport processes in confinement may open tremendous opportunities for energy, catalysis or water treatment applications in the future. Understanding local electrochemical processes can help improve electrochemical energy storage. Here, the authors report a charge storage mechanism in aqueous electrolyte for reduced graphene oxide using an electrochemical quartz crystal microbalance.
Application of QCM in Peptide and Protein-Based Drug Product Development
AT-cut quartz crystals vibrating in the thickness-shear mode (TSM), especially quartz crystal resonators (QCRs), are well known as very efficient mass sensitive systems because of their sensitivity, accuracy, and biofunctionalization capacity. They are highly reliable in the measurement of the mass of deposited samples, in both gas and liquid matrices. Moreover, they offer real-time monitoring, as well as relatively low production and operation costs. These features make mass sensitive systems applicable in a wide range of different applications, including studies on protein and peptide primary packaging, formulation, and drug product manufacturing process development. This review summarizes the information on some particular implementations of quartz crystal microbalance (QCM) instruments in protein and peptide drug product development as well as their future prospects.
Controllable preparation of ultrathin MXene nanosheets and their excellent QCM humidity sensing properties enhanced by fluoride doping
A 2D ultrathin MXene nanosheet was prepared under controlled conditions and employed as a sensitive film to construct a QCM (quartz crystal microbalance) humidity sensor by a dip coating method. The MXene nanosheets were obtained by dislodging the element A from the MAX phase by a facile liquid phase etching method. The morphology and composition of the MXene nanosheets were characterized by means of a number of advanced instruments. It was found that the sample is an ultrathin graphene-like nanosheet. The sensing test results showed that the sensor has a 12.8 Hz/% RH sensitivity, 6 s and 2 s (@ 90%) response/recovery time, maximum humidity hysteresis of 1.16% RH, good stability, and selectivity. Finally, the enhanced humidity response mechanism of the MXene nanosheets was explored by density-functional theory (DFT) calculation and experimental verification. The DFT simulation together with comparison of fluoride-free sample revealed that F elements on the surface of the MXene nanosheets play a more important role in improving humidity responses than OH groups. The results present a new strategy to enhance humidity sensing performance of sensing materials by F − doping or decoration. Thus, the sensor has bright potential for humidity sensing. Graphical abstract
Quartz crystal microbalance–based aptasensor integrated with magnetic pre-concentration system for detection of Listeria monocytogenes in food samples
A fast and accurate identification of Listeria monocytogenes. A new quartz crystal microbalance (QCM) aptasensor was designed for the specific and rapid detection of L. monocytogenes . Before detection of the target bacterium from samples in the QCM aptasensor, a magnetic pre-enrichment system was used to eliminate any contaminant in the samples. The prepared magnetic system was characterized using ATR-FTIR, SEM, VSM, BET, and analytical methods. The saturation magnetization values of the Fe 3 O 4 , Fe 3 O 4 @PDA, and Fe 3 O 4 @PDA@DAPEG particles were 57.2, 40.8, and 36.4 emu/g, respectively. The same aptamer was also immobilized on the QCM crystal integrated into QCM flow cell and utilized to quantitatively detect L. monocytogenes cells from the samples. It was found that a specific aptamer-magnetic pre-concentration system efficiently captured L. monocytogenes cells in a short time (approximately 10 min). The Fe 3 O 4 @PDA@DA-PEG-Apt particles provided selective isolation of L. monocytogenes from the bacteria-spiked media up to 91.8%. The immobilized aptamer content of the magnetic particles was 5834 µg/g using 500 ng Apt/mL. The QCM aptasensor showed a very high range of analytical performance to the target bacterium from 1.0 × 10 2 and 1.0 × 10 7 CFU/mL. The limit of detection (LOD) and limit of quantitation (LOQ) were 148 and 448 CFU/mL, respectively, from the feeding of the QCM aptasensor flow cell with the eluent of the magnetic pre-concentration system. The reproducibility of the aptasensor was more than 95%. The aptasensor was very specific to L. monocytogenes compared to the other Listeria species (i.e., L . ivanovii , L . innocua , and  L. seeligeri ) or other tested bacteria such as  Staphylococcus aureus , Escherichia coli , and  Bacillus subtilis . The QCM aptasensor was regenerated with NaOH solution, and the system was reused many times. Graphical Abstract
Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context
The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
Monte Carlo Tree Search: a review of recent modifications and applications
Monte Carlo Tree Search (MCTS) is a powerful approach to designing game-playing bots or solving sequential decision problems. The method relies on intelligent tree search that balances exploration and exploitation. MCTS performs random sampling in the form of simulations and stores statistics of actions to make more educated choices in each subsequent iteration. The method has become a state-of-the-art technique for combinatorial games. However, in more complex games (e.g. those with a high branching factor or real-time ones) as well as in various practical domains (e.g. transportation, scheduling or security) an efficient MCTS application often requires its problem-dependent modification or integration with other techniques. Such domain-specific modifications and hybrid approaches are the main focus of this survey. The last major MCTS survey was published in 2012. Contributions that appeared since its release are of particular interest for this review.
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products
In alkaline and neutral MEA CO 2 electrolyzers, CO 2 rapidly converts to (bi)carbonate, imposing a significant energy penalty arising from separating CO 2 from the anode gas outlets. Here we report a CO 2 electrolyzer uses a bipolar membrane (BPM) to convert (bi)carbonate back to CO 2 , preventing crossover; and that surpasses the single-pass utilization (SPU) limit (25% for multi-carbon products, C 2+ ) suffered by previous neutral-media electrolyzers. We employ a stationary unbuffered catholyte layer between BPM and cathode to promote C 2+ products while ensuring that (bi)carbonate is converted back, in situ, to CO 2 near the cathode. We develop a model that enables the design of the catholyte layer, finding that limiting the diffusion path length of reverted CO 2 to ~10 μm balances the CO 2 diffusion flux with the regeneration rate. We report a single-pass CO 2 utilization of 78%, which lowers the energy associated with downstream separation of CO 2 by 10× compared with past systems. In the carbon dioxide (CO 2 ) to multicarbon electrolysis, the crossover CO 2 to the oxygen-rich anodic gas stream add a further energy-intensive chemical separation step. Here, the authors demonstrate a bipolar membrane-based electrolyzer design that eliminates the crossover CO2.