Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
18,886
result(s) for
"Microbial interactions"
Sort by:
Interleukin-22-mediated host glycosylation prevents Clostridioides difficile infection by modulating the metabolic activity of the gut microbiota
by
Seekatz, Anna M.
,
Ishii, Chiharu
,
Karlsson, Niclas G.
in
631/250/127/1213
,
631/326/2565/2134
,
631/326/41/2533
2020
The involvement of host immunity in the gut microbiota-mediated colonization resistance to
Clostridioides difficile
infection (CDI) is incompletely understood. Here, we show that interleukin (IL)-22, induced by colonization of the gut microbiota, is crucial for the prevention of CDI in human microbiota-associated (HMA) mice. IL-22 signaling in HMA mice regulated host glycosylation, which enabled the growth of succinate-consuming bacteria
Phascolarctobacterium
spp. within the gut microbiome.
Phascolarctobacterium
reduced the availability of luminal succinate, a crucial metabolite for the growth of
C. difficile
, and therefore prevented the growth of
C. difficile
. IL-22-mediated host
N
-glycosylation is likely impaired in patients with ulcerative colitis (UC) and renders UC-HMA mice more susceptible to CDI. Transplantation of healthy human-derived microbiota or
Phascolarctobacterium
reduced luminal succinate levels and restored colonization resistance in UC-HMA mice. IL-22-mediated host glycosylation thus fosters the growth of commensal bacteria that compete with
C. difficile
for the nutritional niche.
In germ-free mice colonized with human microbiota, mucosal IL-22 signaling promotes the growth of succinate-consuming commensal bacteria via host mucus glycosylation, and transplantation of these bacteria limits
Clostridioides difficile
infection.
Journal Article
Host specificity of the gut microbiome
2021
Developing general principles of host–microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.In this Review, Mallott and Amato summarize the prevalence of phylosymbiosis across the animal kingdom and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. They find that phylosymbiosis is less prevalent in taxonomically richer microbiomes across the animal kingdom, except in mammals, perhaps owing to a unique combination of mammalian traits that influence the microbiota.
Journal Article
The evolution of the host microbiome as an ecosystem on a leash
2017
The human body carries vast communities of microbes that provide many benefits. Our microbiome is complex and challenging to understand, but evolutionary theory provides a universal framework with which to analyse its biology and health impacts. Here we argue that to understand a given microbiome feature, such as colonization resistance, host nutrition or immune development, we must consider how hosts and symbionts evolve. Symbionts commonly evolve to compete within the host ecosystem, while hosts evolve to keep the ecosystem on a leash. We suggest that the health benefits of the microbiome should be understood, and studied, as an interplay between microbial competition and host control.
The human microbiome is a tension between microbes evolving to compete within the host ecosystem, and hosts trying to keep them under control.
Hosts keep their microbiome on a leash
The microbial communities that inhabit the human body provide several benefits to their host, but the evolutionary basis of this complex relationship is unclear. In this Perspective, Kevin Foster and colleagues propose an evolutionary framework for understanding the dynamics of the microbiome. They argue that, in order to understand the microbiome and harness it for health benefits, we need to view the relationship between host and symbiont as one based on microbial competition and host control.
Journal Article
Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities
2022
Nutrient scarcity is pervasive for natural microbial communities, affecting species reproduction and co-existence. However, it remains unclear whether there are general rules of how microbial species abundances are shaped by biotic and abiotic factors. Here we show that the ribosomal RNA gene operon (
rrn
) copy number, a genomic trait related to bacterial growth rate and nutrient demand, decreases from the abundant to the rare biosphere in the nutrient-rich coastal sediment but exhibits the opposite pattern in the nutrient-scarce pelagic zone of the global ocean. Both patterns are underlain by positive correlations between community-level
rrn
copy number and nutrients. Furthermore, inter-species co-exclusion inferred by negative network associations is observed more in coastal sediment than in ocean water samples. Nutrient manipulation experiments yield effects of nutrient availability on
rrn
copy numbers and network associations that are consistent with our field observations. Based on these results, we propose a “hunger games” hypothesis to define microbial species abundance rules using the
rrn
copy number, ecological interaction, and nutrient availability.
Environmental and biotic factors control ecological communities. Here, the authors study community ribosomal rRNA gene copy number in coastal sediment and ocean bacterial communities, and in microcosm nutrient addition experiments, to propose a conceptual framework of how nutrient supply and ecological interactions shape the community.
Journal Article
Host/microbiota interactions in health and diseases—Time for mucosal microbiology
2021
During the last 20 years, a new field of research delineating the importance of the microbiota in health and diseases has emerged. Inappropriate host-microbiota interactions have been shown to trigger a wide range of chronic inflammatory diseases, and defining the exact mechanisms behind perturbations of such relationship, as well as ways by which these disturbances can lead to disease states, both remain to be fully elucidated. The mucosa-associated microbiota constitutes a recently studied microbial population closely linked with the promotion of chronic intestinal inflammation and associated disease states. This review will highlight seminal works that have brought into light the importance of the mucosa-associated microbiota in health and diseases, emphasizing the challenges and promises of expending the mucosal microbiology field of research.
Journal Article
Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication
by
Lau, Harry Cheuk Hay
,
Sung, Joseph J Y
,
Coker, Olabisi Oluwabukola
in
Algorithms
,
Amino acids
,
Antibiotics
2020
Objective Helicobacter pylori is associated with gastric inflammation, precancerous gastric atrophy (GA) and intestinal metaplasia (IM). We aimed to identify microbes that are associated with progressive inflammation, GA and IM 1 year after H. pylori eradication.DesignA total of 587 H. pylori–positive patients were randomised to receive H. pylori eradication therapy (295 patients) or placebo (292 patients). Bacterial taxonomy was analysed on 404 gastric biopsy samples comprising 102 pairs before and after 1 year H. pylori eradication and 100 pairs before and after 1 year placebo by 16S rRNA sequencing.ResultsAnalysis of microbial sequences confirmed the eradication of H. pylori in treated group after 1 year. Principal component analysis revealed distinct microbial clusters reflected by increase in bacterial diversity (p<0.00001) after H. pylori eradication. While microbial interactions remained largely unchanged after placebo treatment, microbial co-occurrence was less in treated group. Acinetobacter lwoffii, Streptococcus anginosus and Ralstonia were enriched while Roseburia and Sphingomonas were depleted in patients with persistent inflammation 1 year after H. pylori eradication. A distinct cluster of oral bacteria comprising Peptostreptococcus, Streptococcus, Parvimonas, Prevotella, Rothia and Granulicatella were associated with emergence and persistence of GA and IM. Probiotic Faecalibacterium praustznii was depleted in subjects who developed GA following H. pylori eradication. Functional pathways including amino acid metabolism and inositol phosphate metabolism were enriched while folate biosynthesis and NOD-like receptor signalling decreased in atrophy/IM-associated gastric microbiota.ConclusionThis study identified that gastric microbes contribute to the progression of gastric carcinogenesis after H. pylori eradication.
Journal Article
Deciphering microbial interactions in synthetic human gut microbiome communities
by
Arkin, Adam P
,
Northen, Trent
,
Venturelli, Ophelia S
in
Bacterial Physiological Phenomena
,
Biochemistry & Molecular Biology
,
Bistability
2018
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model‐guided framework to predict higher‐dimensional consortia from time‐resolved measurements of lower‐order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi‐species community dynamics, as opposed to higher‐order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history‐dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human‐associated intestinal species and illuminated design principles of microbial communities.
Synopsis
Analysis of microbial interactions in a synthetic human gut microbiome community shows that pairwise microbial interactions are major drivers of multi‐species community dynamics. The study reveals ecological drivers, metabolite hub species and ecologically sensitive organisms in the network.
A data‐driven pipeline is used to construct a predictive dynamic model of a diverse anaerobic human gut microbiome community.
Design principles of stable coexistence and history‐dependence are elucidated.
Ecological roles and metabolite profiles are analyzed for each organism.
The study highlights challenges in using phylogenetic and exo‐metabolomic “signals” to predict microbial interactions and community functions.
Graphical Abstract
Analysis of microbial interactions in a synthetic human gut microbiome community shows that pairwise microbial interactions are major drivers of multi‐species community dynamics. The study reveals ecological drivers, metabolite hub species and ecologically sensitive organisms in the network.
Journal Article
Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation
by
Roy, Sonali
,
Nandety, Raja Sekhar
,
Pislariu, Catalina I.
in
Bacteria
,
Cell Division
,
Fabaceae - genetics
2020
Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.
Journal Article
The ecology of the microbiome: Networks, competition, and stability
by
Schluter, Jonas
,
Coyte, Katharine Z.
,
Foster, Kevin R.
in
Communities
,
Community ecology
,
Community Relations
2015
The human gut harbors a large and complex community of beneficial microbes that remain stable over long periods. This stability is considered critical for good health but is poorly understood. Here we develop a body of ecological theory to help us understand microbiome stability. Although cooperating networks of microbes can be efficient, we find that they are often unstable. Counterintuitively, this finding indicates that hosts can benefit from microbial competition when this competition dampens cooperative networks and increases stability. More generally, stability is promoted by limiting positive feedbacks and weakening ecological interactions. We have analyzed host mechanisms for maintaining stability—including immune suppression, spatial structuring, and feeding of community members—and support our key predictions with recent data.
Journal Article