Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,800 result(s) for "Microglia - cytology"
Sort by:
Microglia regulate central nervous system myelin growth and integrity
Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health 1 , it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFβ1–TGFβR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease 2 , 3 . Resident microglia in the central nervous system are identified as the specific macrophage population that regulates myelin growth and integrity.
Microglia and macrophages in brain homeostasis and disease
Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
By comparing gene-expression profiles, Randolph and colleagues distinguish different types of macrophages and pinpoint the differences between macrophages and dendritic cells. We assessed gene expression in tissue macrophages from various mouse organs. The diversity in gene expression among different populations of macrophages was considerable. Only a few hundred mRNA transcripts were selectively expressed by macrophages rather than dendritic cells, and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and FcγR1 (CD64), along with a cluster of previously unidentified transcripts, were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP-α, Bach1 and CREG-1 were among the transcriptional regulators predicted to regulate these core macrophage-associated genes. The mRNA encoding other transcription factors, such as Gata6 , was associated with single macrophage populations. We further identified how these transcripts and the proteins they encode facilitated distinguishing macrophages from dendritic cells.
iPS-cell-derived microglia promote brain organoid maturation via cholesterol transfer
Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain 1 . Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues 2 – 6 . The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development 7 – 10 . However, current approaches do not incorporate microglia or address their role in organoid maturation 11 – 21 . Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac) 22 . In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2 + lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2 + lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis. The authors seek to understand the precise roles of microglia in the early human brain by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac).
Physiology and diseases of tissue-resident macrophages
Embryo-derived tissue-resident macrophages are the first representatives of the haematopoietic lineage to emerge in metazoans. In mammals, resident macrophages originate from early yolk sac progenitors and are specified into tissue-specific subsets during organogenesis—establishing stable spatial and functional relationships with specialized tissue cells—and persist in adults. Resident macrophages are an integral part of tissues together with specialized cells: for instance, microglia reside with neurons in brain, osteoclasts reside with osteoblasts in bone, and fat-associated macrophages reside with white adipocytes in adipose tissue. This ancillary cell type, which is developmentally and functionally distinct from haematopoietic stem cell and monocyte-derived macrophages, senses and integrates local and systemic information to provide specialized tissue cells with the growth factors, nutrient recycling and waste removal that are critical for tissue growth, homeostasis and repair. Resident macrophages contribute to organogenesis, promote tissue regeneration following damage and contribute to tissue metabolism and defence against infectious disease. A correlate is that genetic or environment-driven resident macrophage dysfunction is a cause of degenerative, metabolic and possibly inflammatory and tumoural diseases. In this Review, we aim to provide a conceptual outline of our current understanding of macrophage physiology and its importance in human diseases, which may inform and serve the design of future studies. This Review addresses the current understanding of the roles of tissue-resident macrophages in physiology and disease, including their development and their functions in tissue remodelling and nutrient recycling.
Deciphering human macrophage development at single-cell resolution
Macrophages are the first cells of the nascent immune system to emerge during embryonic development. In mice, embryonic macrophages infiltrate developing organs, where they differentiate symbiotically into tissue-resident macrophages (TRMs) 1 . However, our understanding of the origins and specialization of macrophages in human embryos is limited. Here we isolated CD45 + haematopoietic cells from human embryos at Carnegie stages 11 to 23 and subjected them to transcriptomic profiling by single-cell RNA sequencing, followed by functional characterization of a population of CD45 + CD34 + CD44 + yolk sac-derived myeloid-biased progenitors (YSMPs) by single-cell culture. We also mapped macrophage heterogeneity across multiple anatomical sites and identified diverse subsets, including various types of embryonic TRM (in the head, liver, lung and skin). We further traced the specification trajectories of TRMs from either yolk sac-derived primitive macrophages or YSMP-derived embryonic liver monocytes using both transcriptomic and developmental staging information, with a focus on microglia. Finally, we evaluated the molecular similarities between embryonic TRMs and their adult counterparts. Our data represent a comprehensive characterization of the spatiotemporal dynamics of early macrophage development during human embryogenesis, providing a reference for future studies of the development and function of human TRMs. Single-cell RNA sequencing of haematopoietic cells from human embryos at different developmental stages sheds light on the development and specification of macrophages in different tissues.
Microglia innately develop within cerebral organoids
Cerebral organoids are 3D stem cell-derived models that can be utilized to study the human brain. The current consensus is that cerebral organoids consist of cells derived from the neuroectodermal lineage. This limits their value and applicability, as mesodermal-derived microglia are important players in neural development and disease. Remarkably, here we show that microglia can innately develop within a cerebral organoid model and display their characteristic ramified morphology. The transcriptome and response to inflammatory stimulation of these organoid-grown microglia closely mimic the transcriptome and response of adult microglia acutely isolated from post mortem human brain tissue. In addition, organoid-grown microglia mediate phagocytosis and synaptic material is detected inside them. In all, our study characterizes a microglia-containing organoid model that represents a valuable tool for studying the interplay between microglia, macroglia, and neurons in human brain development and disease. Brain organoid models reported to date lack cells of mesodermal origin, such as microglia. Here, the authors demonstrate that mature microglia-like cells are generated within their cerebral organoid model, providing new avenues for studying human microglia in a three-dimensional brain environment.
Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy
Alzheimer’s disease (AD) is the most prevalent cause of dementia 1 . Although there is no effective treatment for AD, passive immunotherapy with monoclonal antibodies against amyloid beta (Aβ) is a promising therapeutic strategy 2 , 3 . Meningeal lymphatic drainage has an important role in the accumulation of Aβ in the brain 4 , but it is not known whether modulation of meningeal lymphatic function can influence the outcome of immunotherapy in AD. Here we show that ablation of meningeal lymphatic vessels in 5xFAD mice (a mouse model of amyloid deposition that expresses five mutations found in familial AD) worsened the outcome of mice treated with anti-Aβ passive immunotherapy by exacerbating the deposition of Aβ, microgliosis, neurovascular dysfunction, and behavioural deficits. By contrast, therapeutic delivery of vascular endothelial growth factor C improved clearance of Aβ by monoclonal antibodies. Notably, there was a substantial overlap between the gene signature of microglia from 5xFAD mice with impaired meningeal lymphatic function and the transcriptional profile of activated microglia from the brains of individuals with AD. Overall, our data demonstrate that impaired meningeal lymphatic drainage exacerbates the microglial inflammatory response in AD and that enhancement of meningeal lymphatic function combined with immunotherapies could lead to better clinical outcomes. Meningeal lymphatic drainage can affect the microglial inflammatory response and anti-amyloid-β immunotherapy in mouse models of Alzheimer’s disease.
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
To determine the origin of adult tissue-resident macrophages, a mouse lineage tracing study has revealed that these cells derive from erythro-myeloid progenitors in the yolk sac that are distinct from fetal and adult haematopoietic stem cells. The origin of adult myeloid cells The developmental origin of tissue-resident macrophage progenitors and their contribution to macrophages in fetal and adult organs relative to bone marrow macrophages are still unclear. Using lineage tracing, Elisa Gomez Perdiguero et al . identify a population of yolk-sac-derived progenitors — distinct from fetal and adult haematopoetic stem cells — that gives rise to erythrocytes, macrophages, granulocytes and monocytes in the young mouse fetus, and to the vast majority of adult tissue-resident macrophages. Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs) 1 , 2 , 3 , however, macrophages in adult tissues can self-maintain independently of HSCs 4 , 5 , 6 , 7 . Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs 8 , 9 , 10 , 11 , 12 , 13 , and fetal macrophages 13 , 14 , 15 can develop independently of Myb 4 , a transcription factor required for HSC 16 , and can persist in adult tissues 4 , 17 , 18 . Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear 19 . Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2 + (also known as Tek ) cellular pathway generating Csf1r + erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages.
Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution
Microglia have critical roles not only in neural development and homeostasis, but also in neurodegenerative and neuroinflammatory diseases of the central nervous system 1 – 4 . These highly diverse and specialized functions may be executed by subsets of microglia that already exist in situ, or by specific subsets of microglia that develop from a homogeneous pool of cells on demand. However, little is known about the presence of spatially and temporally restricted subclasses of microglia in the central nervous system during development or disease. Here we combine massively parallel single-cell analysis, single-molecule fluorescence in situ hybridization, advanced immunohistochemistry and computational modelling to comprehensively characterize subclasses of microglia in multiple regions of the central nervous system during development and disease. Single-cell analysis of tissues of the central nervous system during homeostasis in mice revealed specific time- and region-dependent subtypes of microglia. Demyelinating and neurodegenerative diseases evoked context-dependent subtypes of microglia with distinct molecular hallmarks and diverse cellular kinetics. Corresponding clusters of microglia were also identified in healthy human brains, and the brains of patients with multiple sclerosis. Our data provide insights into the endogenous immune system of the central nervous system during development, homeostasis and disease, and may also provide new targets for the treatment of neurodegenerative and neuroinflammatory pathologies. Analyses at single-cell resolution show that diverse subtypes of microglia exist during development and homeostasis of the central nervous system, and identify specific subsets of microglia associated with demyelination and neurodegenerative disease in mice and humans.