Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,776
result(s) for
"Microscopy, Polarization"
Sort by:
Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy
by
Hess, Samuel T.
,
Mason, Michael D.
,
Girirajan, Thanu P.K.
in
Aluminum Oxide - chemistry
,
Argon - chemistry
,
Biophysics - instrumentation
2006
Biological structures span many orders of magnitude in size, but far-field visible light microscopy suffers from limited resolution. A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit. Fluorescence photoactivation localization microscopy (FPALM) analyzes thousands of single fluorophores per acquisition, localizing small numbers of them at a time, at low excitation intensity. To control the number of visible fluorophores in the field of view and ensure that optically active molecules are separated by much more than the width of the point spread function, photoactivatable fluorescent molecules are used, in this case the photoactivatable green fluorescent protein (PA-GFP). For these photoactivatable molecules, the activation rate is controlled by the activation illumination intensity; nonfluorescent inactive molecules are activated by a high-frequency (405-nm) laser and are then fluorescent when excited at a lower frequency. The fluorescence is imaged by a CCD camera, and then the molecules are either reversibly inactivated or irreversibly photobleached to remove them from the field of view. The rate of photobleaching is controlled by the intensity of the laser used to excite the fluorescence, in this case an Ar+ ion laser. Because only a small number of molecules are visible at a given time, their positions can be determined precisely; with only ∼100 detected photons per molecule, the localization precision can be as much as 10-fold better than the resolution, depending on background levels. Heterogeneities on length scales of the order of tens of nanometers are observed by FPALM of PA-GFP on glass. FPALM images are compared with images of the same molecules by widefield fluorescence. FPALM images of PA-GFP on a terraced sapphire crystal surface were compared with atomic force microscopy and show that the full width at half-maximum of features ∼86
±
4
nm is significantly better than the expected diffraction-limited optical resolution. The number of fluorescent molecules and their brightness distribution have also been determined using FPALM. This new method suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.
Journal Article
Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging
by
Miller, Karla L.
,
Heinrich, Mattias P.
,
Kleinnijenhuis, Michiel
in
Aged
,
Aged, 80 and over
,
Astrocytes
2017
Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion MRI to reference measures of dispersion obtained from polarized light imaging and histology.
Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion estimates were correlated on region – and voxel-wise levels in the corpus callosum, the centrum semiovale and the corticospinal tract.
The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI.
These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed mapping based on microscopy data.
Journal Article
Influence of hematoxylin and eosin staining on linear birefringence measurement of fibrous tissue structures in polarization microscopy
2023
For microscopic polarization imaging of tissue slices, two types of samples are often prepared: one unstained tissue section for polarization imaging to avoid possible influence from staining dyes quantitatively and one hematoxylin-eosin (H&E) stained adjacent tissue section for histological diagnosis and structural feature identification. However, this sample preparation strategy requires high-quality adjacent tissue sections, and labeling the structural features on unstained tissue sections is impossible. With the fast development of data driven-based polarimetric analysis, which requires a large amount of pixel labeled images, a possible method is to directly use H&E stained slices, which are standard samples archived in clinical hospitals for polarization measurement.
We aim to study the influence of hematoxylin and eosin staining on the linear birefringence measurement of fibrous tissue structures.
We examine the linear birefringence properties of four pieces of adjacent bone tissue slices with abundant collagen fibers that are unstained, H&E stained, hematoxylin (H) stained, and eosin (E) stained. After obtaining the spatial maps of linear retardance values for the four tissue samples, we carry out a comparative study using a frequency distribution histogram and similarity analysis based on the Bhattacharyya coefficient to investigate how H&E staining affects the linear birefringence measurement of bone tissues.
Linear retardance increased after H&E, H, or E staining (41.7%, 40.8%, and 72.5% increase, respectively). However, there is no significant change in the imaging contrast of linear retardance in bone tissues.
The linear retardance values induced by birefringent collagen fibers can be enhanced after H&E, H, or E staining. However, the structural imaging contrasts based on linear retardance did not change significantly or the staining did not generate linear birefringence on the sample area without collagen. Therefore, it can be acceptable to prepare H&E stained slices for clinical applications of polarimetry based on such a mapping relationship.
Journal Article
Scattering polarimetry enables correlative nerve fiber imaging and multimodal analysis
by
Menzel, Miriam
,
Amunts, Katrin
,
Axer, Markus
in
631/1647/245/2226
,
639/624/1107/328/1652
,
692/698/1688/64
2025
Mapping the intricate network of nerve fibers is crucial for understanding brain function. Three-Dimensional Polarized Light Imaging (3D-PLI) and Computational Scattered Light Imaging (ComSLI) map dense nerve fibers in brain sections with micrometer resolution using visible light. 3D-PLI reconstructs 3D-fiber orientations, while ComSLI disentangles multiple directions per pixel. So far, these imaging techniques have been realized in separate setups. A combination within a single device would facilitate faster measurements, pixelwise mapping, cross-validation of fiber orientations, and leverage the advantages of each technique while mitigating their limitations. Here, we introduce the Scattering Polarimeter, a microscope that facilitates correlative large-area scans by integrating 3D-PLI and ComSLI measurements into a single system. Based on a Mueller polarimeter, it incorporates variable retarders and a large-area light source for direct and oblique illumination, enabling combined 3D-PLI and ComSLI measurements. Applied to human and vervet monkey brain sections, the Scattering Polarimeter generates results comparable to state-of-the-art 3D-PLI and ComSLI setups and creates a multimodal fiber direction map, integrating the robust fiber orientations obtained from 3D-PLI with fiber crossings from ComSLI. Furthermore, we discuss applications of the Scattering Polarimeter for unprecedented correlative and multimodal brain imaging.
Journal Article
Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis
by
Ozcan, Aydogan
,
Furst, Daniel
,
Fitzgerald, John
in
639/624/1107/328
,
639/624/1107/510
,
692/4023
2016
Gout is a form of crystal arthropathy where monosodium urate (MSU) crystals deposit and elicit inflammation in a joint. Diagnosis of gout relies on identification of MSU crystals under a compensated polarized light microscope (CPLM) in synovial fluid aspirated from the patient’s joint. The detection of MSU crystals by optical microscopy is enhanced by their birefringent properties. However, CPLM partially suffers from the high-cost and bulkiness of conventional lens-based microscopy and its relatively small field-of-view (FOV) limits the efficiency and accuracy of gout diagnosis. Here we present a lens-free polarized microscope which adopts a novel differential and angle-mismatched polarizing optical design achieving wide-field and high-resolution holographic imaging of birefringent objects with a color contrast similar to that of a standard CPLM. The performance of this computational polarization microscope is validated by imaging MSU crystals made from a gout patient’s tophus and steroid crystals used as negative control. This lens-free polarized microscope, with its wide FOV (>20 mm
2
), cost-effectiveness and field-portability, can significantly improve the efficiency and accuracy of gout diagnosis, reduce costs and can be deployed even at the point-of-care and in resource-limited clinical settings.
Journal Article
Directionality of light absorption and emission in representative fluorescent proteins
by
Lazar, Josef
,
Khoroshyy, Petro
,
Rybakova, Olga
in
Anisotropy
,
Bioengineering
,
Biological activity
2020
Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.
Journal Article
Combined Raman and polarization sensitive holographic imaging for a multimodal label-free assessment of human sperm function
2019
Raman microspectroscopy (RM) and polarization sensitive digital holographic imaging (PSDHI) are valuable analytical tools in biological and medical research, allowing the detection of both biochemical and morphological variations of the sample without labels or long sample preparation. Here, using this multi-modal approach we analyze
in vitro
human sperm capacitation and the acrosome reaction induced by heparin. The multimodal microscopy provides morphofunctional information that can assess the sperms ability to respond to capacitation stimuli (sperm function). More precisely, the birefringence analysis in sperm cells can be used as an indicator of its structural normality. Indeed, digital holography applied for polarization imaging allows for revelation of the polarization state of the sample, showing a total birefringence of the sperm head in non-reacted spermatozoa, and a birefringence localized in the post-acrosomal region in reacted spermatozoa. Additionally, RM allows the detection and spectroscopic characterization of protein/lipid delocalization in the plasma and acrosomal membranes that can be used as valuable Raman biomarkers of sperm function. Interestingly, these spectral variations can be correlated with different time phases of the cell capacitation response. Although further experimentation is required, the proposed multimodal approach could represent a potential label-free diagnostic tool for use in reproductive medicine and the diagnosis of infertility.
Journal Article
One-shot phase-recovery using a cellphone RGB camera on a Jamin-Lebedeff microscope
by
Amos, Brad
,
Diederich, Benedict
,
Marsikova, Barbora
in
Algorithms
,
Animals
,
Biological properties
2019
Jamin-Lebedeff (JL) polarization interference microscopy is a classical method for determining the change in the optical path of transparent tissues. Whilst a differential interference contrast (DIC) microscopy interferes an image with itself shifted by half a point spread function, the shear between the object and reference image in a JL-microscope is about half the field of view. The optical path difference (OPD) between the sample and reference region (assumed to be empty) is encoded into a color by white-light interference. From a color-table, the Michel-Levy chart, the OPD can be deduced. In cytology JL-imaging can be used as a way to determine the OPD which closely corresponds to the dry mass per area of cells in a single image. Like in other interference microscopy methods (e.g. holography), we present a phase retrieval method relying on single-shot measurements only, thus allowing real-time quantitative phase measurements. This is achieved by adding several customized 3D-printed parts (e.g. rotational polarization-filter holders) and a modern cellphone with an RGB-camera to the Jamin-Lebedeff setup, thus bringing an old microscope back to life. The algorithm is calibrated using a reference image of a known phase object (e.g. optical fiber). A gradient-descent based inverse problem generates an inverse look-up-table (LUT) which is used to convert the measured RGB signal of a phase-sample into an OPD. To account for possible ambiguities in the phase-map or phase-unwrapping artifacts we introduce a total-variation based regularization. We present results from fixed and living biological samples as well as reference samples for comparison.
Journal Article
Polarization-resolved second-harmonic-generation imaging of dermal collagen fiber in prewrinkled and wrinkled skins of ultraviolet-B-exposed mouse
2019
Skin wrinkling is a typical symptom of cutaneous photoaging; however, the skin wrinkling depends on not only the actual age but also exposure history to ultraviolet B (UVB) rays in individuals. Therefore, there is considerable need for its assessment technique in vivo in skin cosmetics and antiaging dermatology. Wrinkles always appear as linear grooves in the skin, and dermal collagen fibers play an important role to determine the morphology and mechanical properties of the skin. Therefore, an optical probe sensitive to dermal collagen fiber and its orientation will be useful. Polarization-resolved second-harmonic-generation (SHG) microscopy is a promising approach for in vivo evaluation of collagen fiber orientation because the efficiency of SHG light is sensitive to collagen fiber orientation when the incident light is linearly polarized. We investigate orientation change of dermal collagen fiber in prewrinkled and wrinkled skins of the UVB-exposed mouse model using polarization-resolved SHG microscopy. A polarization anisotropic image of the SHG light indicates that the change of collagen fiber orientation starts in the prewrinkled skin of UVB-exposed mice, then the wrinkle appears. Furthermore, the dominant direction of collagen fiber orientation in the prewrinkled skin is significantly parallel to the wrinkle direction in the wrinkled skin. This result implies that the change of collagen fiber orientation is a trigger of wrinkling in cutaneous photoaging.
Journal Article
Periphyton (microbiome) of filamentous algae studied by polarization microscopy, aided also by some contrasting optical methods
2023
Polarization microscopy, possibly together with some contrast techniques (dark field and color phase contrast), was used to study the periphyton (microbiome) growing on filamentous green algae. The material containing filamentous algae with periphyton on the surface was collected in the villages of Sýkořice and Zbečno (Křivoklátsko Protected Landscape Area). The objects were studied in a LOMO MIN-8 St. Petersburg polarizing microscope and a Carl Zeiss Jena NfpK laboratory microscope equipped with an In Ph 160 basic body with variable dark field or color phase contrast and a Nikon D70 DSLR digital camera. Cells of filamentous algae of the genera Cladophora, Vaucheria, and Oedogonium were studied and the periphyton attached to them formed by cyanobacteria of the genera Chamaesiphon and Pleurocapsa and algae of the genera Characium, including diatoms of the genera Eunotia and Synedra. In all cases, the cell walls of the host algae showed a very strong birefringence. In contrast, the walls of cyanobacteria of the genera Chamaesiphon and Pleurocapsa were characterized by a much weaker birefringence (Pleurocapsa somewhat thicker), and the diatom frustules of the genera Eunotia and Synedra were almost without a birefringence. Strongly birefringent granules were found in the cytoplasm of the green alga of the genus Characium, which forms periphyton on the filamentous green algae of the genus Vaucheria. The periphyton on the filamentous alga of the genus Oedogonium, formed by cyanobacteria of the genus Pleurocapsa and diatoms of the genera Eunotia and Synedra, deposited in a massive layer of mucus containing birefringent crystals, showed a particularly strong birefringence. At the end of the vegetation of filamentous algae, their parts and remnants of periphyton (diatom frustules and crystals) became part of the detritus at the bottom of the culture vessel. The use of polarization microscopy in the study of filamentous algae with periphyton on the surface allows us not only to determine the birefringence of the observed structures, but also to partially deduce their chemical composition, or regular arrangement of particles, so-called shape birefringence.
Journal Article