Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
237
result(s) for
"Microtox"
Sort by:
Comparison of organics and heavy metals acute toxicities to Vibrio fischeri
by
Ma, Ke
,
Ye, Jianbin
,
Wang, Fangfang
in
bioluminescence inhibition
,
cell death
,
cell death rate
2016
Vibrio fischeri bioluminescence inhibition has been widely used to test acute toxicities of metals and organics contaminants. However, the differences of metals and organics acute toxicities to V. fischeri have not been compared. Here, four heavy metals (Zn2+, Cu2+, Cd2+, Cr6+) and five organics (phenol, benzoic acid, p-hydroxy benzoic acid, nitro-benzene and benzene) acute toxicities to V. fischeri were investigated. Heavy metals toxicities to V. fischeri were increased along with the reaction time, while the organics toxicities kept the same level in different reaction times. In order to explain the difference, the relative cell death rate of V. fischeri was detected. In metals toxicities tests, the bioluminescence inhibition rate of V. fischeri was found to be significantly higher than the relative cell death rate (P<0.05), while for the organics toxicities tests, the cell death rate was similar to the bioluminescence inhibition rate. These results indicated that organics acute toxicities to V. fischeri could reflect the death of cell, but metals acute toxicities to V. fischeri may not lead to the death of cell, just represent the bioluminescence inhibition. nema
Journal Article
Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications
by
Ziegler-Borowska, Marta
,
Goslinski, Tomasz
,
Grebicka, Patrycja
in
Biocompatibility
,
Biomedical materials
,
Biopolymers
2020
Materials based on natural high molecular compounds are particularly interesting for biomedical applications. It is known that the cross-linking agent used for preparation of biomacromolecule-based materials is as important as used biopolymer. Therefore, natural cross-linkers containing reactive carbonyl groups are of great interest especially for modifying properties of natural polysaccharides. One of the most popular cross-linking agents is glutaraldehyde. Nevertheless, the unreacted particles can be released from the cross-linked material and cause cytotoxic effects. This can be eliminated when using a cross-linker based e.g., on polysaccharides. This article describes quick and efficient synthesis of dialdehyde chitosan (DACS) and its application for the preparation of chitosan films. Materials obtained with different amount of DACS were fully characterized in terms of structure and surface morphology. Thermal and mechanical properties as well as hydrophilic character were also examined. The results obtained were compared with the materials obtained by cross-linking chitosan with low molecular weight glutaraldehyde and high molecular weight cross-linking agent based on polysaccharide–dialdehyde starch. Toxicity of all obtained materials was tested using the Microtox® test. It has been shown that due to better mechanical, thermal and surface properties as well as lower toxicity, dialdehyde chitosan is a very promising crosslinking agent.
Journal Article
Chitosan-based films with cannabis oil as a base material for wound dressing application
by
Nowak, Pawel
,
Ziegler-Borowska, Marta
,
Goslinski, Tomasz
in
639/638/298/54/990
,
639/638/455/953
,
Acute toxicity
2022
This study focuses on obtaining and characterizing novel chitosan-based biomaterials containing cannabis oil to potentially promote wound healing. The primary active substance in cannabis oil is the non-psychoactive cannabidiol, which has many beneficial properties. In this study, three chitosan-based films containing different concentrations of cannabis oil were prepared. As the amount of oil increased, the obtained biomaterials became rougher as tested by atomic force microscopy. Such rough surfaces promote protein adsorption, confirmed by experiments assessing the interaction between human albumin with the obtained materials. Increased oil concentration also improved the films' mechanical parameters, swelling capacity, and hydrophilic properties, which were checked by the wetting angle measurement. On the other hand, higher oil content resulted in decreased water vapour permeability, which is essential in wound dressing. Furthermore, the prepared films were subjected to an acute toxicity test using a Microtox. Significantly, the film's increased cannabis oil content enhanced the antimicrobial effect against
A. fischeri
for films in direct contact with bacteria. More importantly, cell culture studies revealed that the obtained materials are biocompatible and, therefore, they might be potential candidates for application in wound dressing materials.
Journal Article
Comprehensive Analysis of the Acute Toxicity of Ionic Liquids Using Microtox® Bioassays
by
Teijeira, Tamara
,
Vallet, Pablo
,
Parajó, Juan José
in
alkyl chain length effect
,
anion effect
,
Bacteria
2024
The ecotoxicity of a set of 30 ionic liquids, namely 23 aprotic compounds (APILs) and 7 protic compounds (PILs), was analyzed in this work by monitoring the inhibition of the bioluminescence of the bacteria Aliivibrio fischeri with varying concentrations of ILs utilizing the Microtox® standard toxicity test. The study covered ILs that have various synthetic natures, PILs and APILs, with a common anion or cation, and different alkyl chain lengths. The results indicate that both moieties, anion and cation, have an influence on toxicity, these being the ILs with the bis((trifluoromethyl)sulfonyl)imide (TFSI) anion and imidazolium cation, which are the most harmful, while those less toxic correspond to ammonium-based ILs. The alkyl chain length seems to have the most significant impact on toxicity, except for tris(pentafluoroethyl) trifluorophosphate (FAP) anion-based ILs, which, interestingly, showed the opposite behavior. A critical alkyl size (CAS) at C = 6 was observed for the rest of the families, resulting in a significant reduction in the effective concentration (EC) values: the connection between this CAS and toxicity has never been observed before, and it indicates a threshold that marks the end of harmlessness (C < 6) and the start of toxicity (C > 6).
Journal Article
Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: kinetics, biodegradation pathways, and ecotoxicity of treated waters
by
López-García Ester
,
Sarrà Montserrat
,
Hu Kaidi
in
Biodegradation
,
Bioreactors
,
Cytochrome P450
2022
The massive use of pesticides represents one of the main causes of environmental deterioration, as they have adverse effects on non-target organisms. Thus, the development of technologies capable of reducing their release into the environment is urgently needed. This study reports for the first time the white-rot fungus Trametes versicolor as an alternative towards the degradation of medium to highly polar pesticides such as the organophosphate malathion, and the neonicotinoids acetamiprid and imidacloprid. Specifically, T. versicolor could completely remove 1 mg/L of malathion in an Erlenmeyer flask within 48 h, while experiments of acetamiprid and imidacloprid (4 mg/L), conducted in air-pulse fluidized bioreactors, resulted in degradation percentages of 20% and 64.7%, respectively, after 7 days of operation. Enzymatic exploration studies revealed that the cytochrome P450 system, instead of the extracellular enzyme laccase, is involved in the degradation of acetamiprid and imidacloprid. The degradation pathways were proposed based on the main transformation products (TPs) formed in the solutions: seven in the case of malathion, and two and one in the case of imidacloprid and acetamiprid, respectively. Although the TPs identified were predicted to be less toxic than the investigated pesticides, the toxicity of the individual solutions slightly increased throughout the degradation process, according to the Microtox assay. However, the solution toxicity was always below the threshold established in the local regulation. Although additional research is needed to implement this treatment at a pilot plant scale, this work highlights the potential of T. versicolor to bio-remediate pesticide-contaminated waters.
Journal Article
Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila
2017
Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La3+, Ce3+, Pr3+, Nd3+, Gd3+, CeO2, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co2+, Fe3+, Mn2+, Ni2+, Sr2+). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5–21 mg metal/L; minimal bactericidal concentration, MBC 6.3–63 mg/L) and to protozoa (EC50 28–42 mg/L); and (iii) also some dopant metals (Ni2+, Fe3+) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La2NiO4 (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.
Journal Article
Pyrrole dicarboxylate substituted porphyrazine, microwave assisted synthesis and properties
by
Kryjewski, Michal
,
Koczorowski, Tomasz
,
Szczolko, Wojciech
in
639/638
,
639/638/161
,
639/638/549/908
2025
In this study, a new magnesium(II) porphyrazine derivative tetrasubstituted with dicarboxypyrrolyl moieties was synthesized. Two different approaches were used, utilizing conventional heating and microwave irradiation. The developed three-step processes were compared showing the superior performance of the microwave-assisted organic synthesis. The new macrocycle and the novel maleonitrile derivatives were characterized using spectral techniques (mass spectrometry, NMR spectroscopy, UV-Vis spectrophotometry) and the ability of the porphyrazine to generate singlet oxygen assessed using the method with 1,3-diphenylisobenzofuran. The singlet oxygen generation quantum yields were found to be moderate (Φ
Δ
= 0.23 and 0.22 in DMF and DMSO, respectively) and no aggregation behavior was noted in a series of dilutions. Additionally, the acute toxicity test using Microtox was performed showing almost no toxicity at the concentration of 10
− 5
mol/L. The electrochemical studies revealed three redox processes of targeted porphyrazine with low first oxidation peak, whereas the spectroelectrochemistry showed the formation of both cationic and anionic species at proper potentials.
Journal Article
Evaluation of residual antimicrobial activity and acute toxicity during the degradation of gatifloxacin by ozonation
by
Caianelo, Marlon
,
Diniz, Vinicius
,
Spina, Mylena
in
advanced oxidation process
,
degradation products
,
fluoroquinolone
2021
The concerns regarding the occurrence of pharmaceuticals in wastewater treatment plants have increased in the last decades. Gatifloxacin (GAT), the fourth generation of fluoroquinolones, has been widely used to treat both Gram-positive and Gram-negative bacteria and has a limited metabolization. The present study aimed to evaluate ozonation as a technique to degrade GAT. An exchange A UHPLC-MS/MS by an UHPLC-MS/MS method was used to quantify the residual of GAT and to assess its degradation products. The removal efficiency was higher under alkaline conditions (pH = 10), reaching up to 99% of GAT after 4 min. It was also observed that the first ozone attack on the GAT molecule was through the carboxylic group. In contrast, under acid conditions (pH = 3), the ozone attack was first to the piperazinyl ring. The antimicrobial activity was evaluated using Escherichia coli and Bacillus subtilis as test organisms, and it was observed that the residual activity reduced most under alkaline conditions. In contrast, the best condition to remove the residual toxicity evaluated for the marine bacteria V. fischeri was the acidic one. Due to this, ozonation seemed to be an exciting process to remove GAT in aqueous media.
Journal Article
Can Pharmaceutical Excipients Threaten the Aquatic Environment? A Risk Assessment Based on the Microtox® Biotest
by
Marciniak, Bernard
,
Różycka-Sokołowska, Ewa
,
Turek, Marika
in
aquatic toxicity
,
cardiovascular drugs
,
Cellulose
2023
The ecotoxicological impact of pharmaceuticals has received considerable attention, primarily focusing on active pharmaceutical ingredients (APIs) while largely neglecting the potential hazards posed by pharmaceutical excipients. Therefore, we analyzed the ecotoxicity of 16 commonly used pharmaceutical excipients, as well as 26 API–excipient and excipient–excipient mixtures utilizing the Microtox® test. In this way, we assessed the potential risks that pharmaceutical excipients, generally considered safe, might pose to the aquatic environment. We investigated both their individual ecotoxicity and their interactions with tablet ingredients using concentration addition (CA) and independent action (IA) models to shed light on the often-overlooked ecotoxicological consequences of these substances. The CA model gave a more accurate prediction of toxicity and should be recommended for modeling the toxicity of combinations of drugs with different effects. A challenge when studying the ecotoxicological impact of some pharmaceutical excipients is their poor water solubility, which hinders the use of standard aquatic ecotoxicity testing techniques. Therefore, we used a modification of the Microtox® Basic Solid Phase protocol developed for poorly soluble substances. The results obtained suggest the high toxicity of some excipients, i.e., SLS and meglumine, and confirm the occurrence of interactions between APIs and excipients. Through this research, we hope to foster a better understanding of the ecological impact of pharmaceutical excipients, prompting the development of risk assessment strategies within the pharmaceutical industry.
Journal Article