Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Millennial time-scale"
Sort by:
Novel insights into post‐glacial vegetation change: functional and phylogenetic diversity in pollen records
QUESTION: How do pollen‐based functional and phylogenetic diversity help to explain post‐glacial vegetation change in relation to climate and human influence? LOCATION: Estonia and Latvia, NE Europe. METHODS: We used a data set of 1062 pollen samples from 20 sites covering the last 14 500 yrs to estimate plant richness, evenness, functional and phylogenetic diversity (community‐weighted mean and mean pair‐wise distance). We adjusted existing functional and phylogenetic diversity measures for the pollen data and tested the methods with a simulation study. The simulations showed that species‐based and pollen‐based diversity estimates were all significantly positively correlated. RESULTS: The Late Glacial (14 500–11 650 cal. yr BP) and the mid‐Holocene (8000–4000 cal. yr BP) periods showed contrasting values for most of the diversity components, and several diversity estimates were strongly associated with climate. The cold climate during the Late Glacial led to high phylogenetic diversity, and relatively low functional diversity. Climate warming during the transition from the Late Glacial to the Holocene was followed by a decrease in phylogenetic diversity but an increase in functional diversity based on plant height and seed weight. Increasing human impact in the late Holocene was associated with an increase in plant richness and decreases in functional diversity based on plant height and seed weight and in phylogenetic diversity of herbs. CONCLUSIONS: Pollen‐based functional and phylogenetic diversity provide novel insights into post‐glacial vegetation change and its drivers. Both functional and phylogenetic diversity were closely related to climatic conditions, suggesting that trait differences play an important role in long‐term community response to climate change. Our results indicate that human impact during the last two millennia has influenced functional and phylogenetic diversity negatively by suppressing plants with certain traits (functional convergence) and giving advantage to plants from certain phylogenetic lineages. We see great potential in the further development of functional and phylogenetic diversity methods for pollen data.
Long-term drivers of forest composition in a boreonemoral region: the relative importance of climate and human impact
Aim: To assess statistically the relative importance of climate and human impact on forest composition in the late Holocene. Location: Estonia, boreonemoral Europe. Methods: Data on forest composition (10 most abundant tree and shrub taxa) for the late Holocene (5100—50 calibrated years before 1950) were derived from 18 pollen records and then transformed into land-cover estimates using the REVEALS vegetation reconstruction model. Human impact was quantified with palaeoecological estimates of openness, frequencies of hemerophilous pollen types (taxa growing in habitats influenced by human activities) and microscopic charcoal particles. Climate data generated with the ECBilt-CLIOVECODE climate model provided summer and winter temperature data. The modelled data were supported by sedimentary stable oxygen isotope (δ 18 O) records. Redundancy analysis (RDA), variation partitioning and linear mixed effects (LME) models were applied for statistical analyses. Results: Both climate and human impact were statistically significant predictors of forest compositional change during the late Holocene. While climate exerted a dominant influence on forest composition in the beginning of the study period, human impact was the strongest driver of forest composition change in the middle of the study period, c. 4000—2000 years ago, when permanent agriculture became established and expanded. The late Holocene cooling negatively affected populations of nemoral deciduous taxa (Tilia, Corylus, Ulmus, Quercus, Alnus and Fraxinus), allowing boreal taxa (Betula, Salix, Picea and Pinus) to succeed. Whereas human impact has favoured populations of early-successional taxa that colonize abandoned agricultural fields (Betula, Salix, Alnus) or that can grow on less fertile soils (Pinus), it has limited taxa such as Picea that tend to grow on more mesic and fertile soils. Main conclusions: Combining palaeoecological and palaeoclimatological data from multiple sources facilitates quantitative characterization of factors driving forest composition dynamics on millennial time-scales. Our results suggest that in addition to the climatic influence on forest composition, the relative abundance of individual forest taxa has been significantly influenced by human impact over the last four millennia.
Forced response of the East Asian summer rainfall over the past millennium: results from a coupled model simulation
The centennial-millennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000 years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial-millennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial-millennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual-decadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength.
Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR-CCSM3
During the last deglaciation (from approximately 21 to 11 thousand years ago), the high latitudes of the Atlantic Ocean underwent major changes. Besides the continuous warming, the polar and subpolar ocean surface received a large amount of meltwater from the retracting ice sheets. These changes in temperature and salinity affected deep waters, such as the Antarctic Bottom Water (AABW) and the North Atlantic Deep Water (NADW), which are formed in the Southern Ocean and in the northern North Atlantic, respectively. In this study, we present the evolution of the physical properties and distribution of the AABW and the NADW since the last glacial maximum using the results of a transient simulation with NCAR-CCSM3. In this particular model scenario with a schematic freshwater forcing, we find that modern NADW, with its characteristic salinity maximum at depth, was absent in the beginning of the deglaciation, while its intermediate version—Glacial North Atlantic Intermediate Water (GNAIW)—was being formed. GNAIW was a cold and relatively fresh water mass that dominated intermediate depths between 60 and 20°N. At this time, most of the deep and abyssal Atlantic basin was dominated by AABW. Within the onset of the Bølling-Allerød period, at nearly 15 thousand years ago (ka), GNAIW expanded southwards when the simulated Meridional Overturning Circulation overshoots. The transition between GNAIW and NADW ocurred after that, when AABW was fresh enough to allow NADW to sink deeper in the water column. When the NADW appears (~11 ka), AABW retracts and is constrained to lie near the bottom.