Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6,062
result(s) for
"Mineral Fibers"
Sort by:
Particle toxicology and health - where are we?
by
Gulumian, Mary
,
Kreyling, Wolfgang
,
Oberdörster, Günter
in
Air Pollutants - chemistry
,
Air Pollutants - toxicity
,
Bioavailability
2019
Background
Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses.
While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles’ and fibres’ risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios.
Conclusions
Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Journal Article
Occupational risk resulting from exposure to mineral wool when installing insulation in buildings
by
Konieczko, Katarzyna
,
Czerczak, Sławomir
,
Kupczewska-Dobecka, Małgorzata
in
Aluminum oxide
,
Asbestos
,
Binders
2020
Mineral wool is widely used for thermal and sound insulation. The subject of the study is to identify hazards for employees resulting from exposure to mineral wool, when it is used to insulate buildings, and to assess the risk arising from this exposure. When installing mineral wool insulation, respirable mineral fibers, dust, and volatile organic compounds may pose a hazard at workplaces. Based on the results of concentration measurements, it was assessed that the probability of adverse health effects related to the work of insulation installers, resulting from exposure to mineral wool fibers, is low, but for dust associated with exposure, an average health risk was estimated. An additional threat may be the sensitizing effect of substances used as binders and additives improving the utility properties of mineral wool, for example, phenol formaldehyde resins. The paper also contains some information on the labeling of mineral wool; this is very important because the label allows downstream users to recognize mineral wools, the composition and properties of which cause that they are not classified as carcinogens. Int J Occup Med Environ Health. 2020;33(6):757-69.
Journal Article
The Acute Toxicity of Mineral Fibres: A Systematic In Vitro Study Using Different THP-1 Macrophage Phenotypes
by
Fornasini, Laura
,
Raneri, Simona
,
Vernazza, Stefania
in
Apoptosis
,
Asbestos
,
Asbestos - metabolism
2022
Alveolar macrophages are the first line of defence against detrimental inhaled stimuli. To date, no comparative data have been obtained on the inflammatory response induced by different carcinogenic mineral fibres in the three main macrophage phenotypes: M0 (non-activated), M1 (pro-inflammatory) and M2 (alternatively activated). To gain new insights into the different toxicity mechanisms of carcinogenic mineral fibres, the acute effects of fibrous erionite, crocidolite and chrysotile in the three phenotypes obtained by THP-1 monocyte differentiation were investigated. The three mineral fibres apparently act by different toxicity mechanisms. Crocidolite seems to exert its toxic effects mostly as a result of its biodurability, ROS and cytokine production and DNA damage. Chrysotile, due to its low biodurability, displays toxic effects related to the release of toxic metals and the production of ROS and cytokines. Other mechanisms are involved in explaining the toxicity of biodurable fibrous erionite, which induces lower ROS and toxic metal release but exhibits a cation-exchange capacity able to alter the intracellular homeostasis of important cations. Concerning the differences among the three macrophage phenotypes, similar behaviour in the production of pro-inflammatory mediators was observed. The M2 phenotype, although known as a cell type recruited to mitigate the inflammatory state, in the case of asbestos fibres and erionite, serves to support the process by supplying pro-inflammatory mediators.
Journal Article
Exposure to fibres and risk of pleural mesothelioma in the Norwegian Offshore Petroleum Workers cohort
2024
ObjectivesPleural mesothelioma is a rare respiratory cancer, mainly caused by inhalation of asbestos fibres. Other inorganic fibres are also suggested risk factors. We aimed to investigate the association between exposure to asbestos or refractory ceramic fibres (RCFs) and pleural mesothelioma among male Norwegian offshore petroleum workers.MethodsAmong 25 347 men in the Norwegian Offshore Petroleum Workers (NOPW) cohort (1965–1998), 43 pleural mesothelioma cases were identified through the Cancer Registry of Norway (1999–2022). A case–cohort study was conducted with 2095 randomly drawn non-cases from the cohort. Asbestos and RCF exposures were assessed with expert-made job-exposure matrices (JEMs). Weighted Cox regression was used to estimate HRs and 95% CIs, adjusted for age at baseline and pre-offshore employment with likely asbestos exposure.ResultsAn increased risk of pleural mesothelioma was indicated for the highest versus lowest tertile of average intensity of asbestos (HR=1.21, 95% CI: 0.57 to 2.54). Pre-offshore asbestos exposure (vs no such exposure) was associated with increased risk of pleural mesothelioma (HR=2.06, 95% CI: 1.11 to 3.81). For offshore workers with no pre-offshore asbestos exposure, an increased risk of pleural mesothelioma was found for the highest tertile of average intensity of asbestos (HR=4.13, 95% CI: 0.93 to 18), versus the lowest tertile. No associations were found between RCF and pleural mesothelioma.ConclusionsAssociations between JEM-based offshore asbestos exposure and pleural mesothelioma were confirmed in the NOPW cohort. Pleural mesothelioma risk was also associated with asbestos exposure before work in the offshore petroleum industry.
Journal Article
Pleural mesothelioma and lung cancer risks in relation to occupational history and asbestos lung burden
2016
BackgroundWe have conducted a population-based study of pleural mesothelioma patients with occupational histories and measured asbestos lung burdens in occupationally exposed workers and in the general population. The relationship between lung burden and risk, particularly at environmental exposure levels, will enable future mesothelioma rates in people born after 1965 who never installed asbestos to be predicted from their asbestos lung burdens.MethodsFollowing personal interview asbestos fibres longer than 5 µm were counted by transmission electron microscopy in lung samples obtained from 133 patients with mesothelioma and 262 patients with lung cancer. ORs for mesothelioma were converted to lifetime risks.ResultsLifetime mesothelioma risk is approximately 0.02% per 1000 amphibole fibres per gram of dry lung tissue over a more than 100-fold range, from 1 to 4 in the most heavily exposed building workers to less than 1 in 500 in most of the population. The asbestos fibres counted were amosite (75%), crocidolite (18%), other amphiboles (5%) and chrysotile (2%).ConclusionsThe approximate linearity of the dose–response together with lung burden measurements in younger people will provide reasonably reliable predictions of future mesothelioma rates in those born since 1965 whose risks cannot yet be seen in national rates. Burdens in those born more recently will indicate the continuing occupational and environmental hazards under current asbestos control regulations. Our results confirm the major contribution of amosite to UK mesothelioma incidence and the substantial contribution of non-occupational exposure, particularly in women.
Journal Article
The So-called Short-Fiber Controversy: Literature Review and Critical Analysis
2015
Numerous articles in the scientific literature indicate that pathogenic fibers with respect to asbestos-related diseases are those that exceed 5 μm in length. Nonetheless, some authors have expressed concerns regarding pathogenicity of shorter fibers.
To review the scientific evidence regarding pathogenicity (or lack thereof) of fibers less than or equal to 5 μm in length, with particular attention to publications indicating that such fibers might be hazardous.
The scientific literature was reviewed for experimental animal studies and human studies that address the role of fiber size in causation of disease. Sources included original studies, as well as review articles related to the topic.
Experimental animal studies involving inhalation of fibers have demonstrated that fibers greater than 5 μm in length are associated with both pulmonary fibrosis (ie, asbestosis) and malignancies (carcinoma of the lung and mesothelioma). There is no convincing evidence for a pathogenic effect for fibers that are 5 μm or less in length. Fiber analyses of human lung tissue samples provide further support for pathogenicity of long fibers, particularly the more biopersistent amphibole fibers. Similar observations have been reported for nonasbestos mineral fibers. Concerns expressed by some authors (eg, the greater abundance of short fibers) do not alter these conclusions. Similarly, in vitro studies demonstrating biological activity of short fibers do not override inhalational studies of whole animals or the epidemiological findings in humans.
Journal Article
Erionite exposure in North Dakota and Turkish villages with mesothelioma
by
Brass, Brian
,
Dogan, A. Umran
,
Jube, Sandro
in
Air Pollutants - adverse effects
,
Air sampling
,
Asbestos
2011
Exposure to erionite, an asbestos-like mineral, causes unprecedented rates of malignant mesothelioma (MM) mortality in some Turkish villages. Erionite deposits are present in at least 12 US states. We investigated whether increased urban development has led to erionite exposure in the United States and after preliminary exploration, focused our studies on Dunn County, North Dakota (ND). In Dunn County, ND, we discovered that over the past three decades, more than 300 miles of roads were surfaced with erionite-containing gravel. To determine potential health implications, we compared erionite from the Turkish villages to that from ND. Our study evaluated airborne point exposure concentrations, examined the physical and chemical properties of erionite, and examined the hallmarks of mesothelial cell transformation in vitro and in vivo. Airborne erionite concentrations measured in ND along roadsides, indoors, and inside vehicles, including school buses, equaled or exceeded concentrations in Boyali, where 6.25% of all deaths are caused by MM. With the exception of outdoor samples along roadsides, ND concentrations were lower than those measured in Turkish villages with MM mortality ranging from 20 to 50%. The physical and chemical properties of erionite from Turkey and ND are very similar and they showed identical biological activities. Considering the known 30- to 60-y latency for MM development, there is reason for concern for increased risk in ND in the future. Our findings indicate that implementation of novel preventive and early detection programs in ND and other erionite-rich areas of the United States, similar to efforts currently being undertaken in Turkey, is warranted.
Journal Article
Potassium octatitanate fibers induce persistent lung and pleural injury and are possibly carcinogenic in male Fischer 344 rats
by
Takahashi, Satoru
,
Tsuda, Hiroyuki
,
Numano, Takamasa
in
Alcohol
,
Alkaline phosphatase
,
Alveoli
2018
Potassium octatitanate fibers (K2O·8TiO2, POT fibers) are widely used as an alternative to asbestos. We investigated the pulmonary and pleural toxicity of POT fibers with reference to 2 non‐fibrous titanium dioxide nanoparticles (nTiO2), photoreactive anatase (a‐nTiO2) and inert rutile (r‐nTiO2). Ten‐week‐old male F344 rats were given 0.5 mL of 250 μg/mL suspensions of POT fibers, a‐nTiO2, or r‐nTiO2, 8 times (1 mg/rat) over a 15‐day period by trans‐tracheal intrapulmonary spraying (TIPS). Rats were killed at 6 hours and at 4 weeks after the last TIPS dose. Alveolar macrophages were significantly increased in all treatment groups at 6 hours and at 4 weeks. At week 4, a‐nTiO2 and r‐nTiO2 were largely cleared from the lung whereas a major fraction of POT fibers were not cleared. In the bronchoalveolar lavage, alkaline phosphatase activity was elevated in all treatment groups, and lactate dehydrogenase (LDH) activity was elevated in the a‐nTiO2 and POT groups. In lung tissue, oxidative stress index and proliferating cell nuclear antigen (PCNA) index were elevated in the a‐nTiO2 and POT groups, and there was a significant elevation in C‐C motif chemokine ligand 2 (CCL2) mRNA and protein in the POT group. In pleural cavity lavage, total protein was elevated in all 3 treatment groups, and LDH activity was elevated in the a‐nTiO2 and POT groups. Importantly, the PCNA index of the visceral mesothelium was increased in the POT group. Overall, POT fibers had greater biopersistence, induced higher expression of CCL2, and provoked a stronger tissue response than a‐nTiO2 or r‐nTiO2. Previous studies of the carcinogenicity of POT fibers administered to the airway of the rat were mostly negative. In the present study, we gave well‐dispersed POT fibers by trans‐tracheal intrapulmonary spraying to male Fischer 344 rats. POT fibers are biopersistent and induce persistent lung and pleural injury and are possibly carcinogenic in male rats.
Journal Article
Chrysotile fibers in tissue adjacent to laryngeal squamous cell carcinoma in cases with a history of occupational asbestos exposure
2020
Asbestos describes a group of naturally occurring fibrous silicate mineral compounds that have been associated with a number of respiratory maladies, including mesothelioma and lung cancer. In addition, based primarily on epidemiologic studies, asbestos has been implicated as a risk factor for laryngeal and pharyngeal squamous cell carcinoma (SCC). The main objective of this work was to strengthen existing evidence via empirical demonstration of persistent asbestos fibers embedded in the tissue surrounding laryngeal and pharyngeal SCC, thus providing a more definitive biological link between exposure and disease. Six human papillomavirus (HPV)-negative laryngeal (
n
= 4) and pharyngeal (
n
= 2) SCC cases with a history working in an asbestos-exposed occupation were selected from a large population-based case–control study of head and neck cancer. A laryngeal SCC case with no history of occupational asbestos exposure was included as a control. Tissue cores were obtained from adjacent nonneoplastic tissue in tumor blocks from the initial primary tumor resection, and mineral fiber analysis was performed using a scanning electron microscope equipped with an energy dispersive X-ray analyzer (EDXA). Chrysotile asbestos fiber bundles were identified in 3/6 of evaluated cases with a history of occupational asbestos exposure. All three cases had tumors originating in the larynx. In addition, a wollastonite fiber of unclear significance was identified one of the HPV-negative pharyngeal SCC cases. No mineral fibers were identified in adjacent tissue of the case without occupational exposure. The presence of asbestos fibers in the epithelial tissue surrounding laryngeal SCC in cases with a history of occupational asbestos exposure adds a key line of physical evidence implicating asbestos as an etiologic factor.
Journal Article
Characterization of Fibrous Wollastonite NYAD G in View of Its Use as Negative Standard for In Vitro Toxicity Tests
by
Tessari, Umberto
,
Lassinantti Gualtieri, Magdalena
,
Nodari, Luca
in
Amosite
,
Asbestos
,
Bioassays
2021
Today, despite considerable efforts undertaken by the scientific community, the mechanisms of carcinogenesis of mineral fibres remain poorly understood. A crucial role in disclosing the mechanisms of action of mineral fibres is played by in vitro and in vivo models. Such models require experimental design based on negative and positive controls. Commonly used positive controls are amosite and crocidolite UICC standards, while negative controls have not been identified so far. The extensive characterisation and assessment of toxicity/pathogenicity potential carried out in this work indicate that the commercial fibrous wollastonite NYAD G may be considered as a negative standard control for biological and biomedical tests involving mineral fibres. Preliminary in vitro tests suggest that wollastonite NYAD G is not genotoxic. This material is nearly pure and is characterized by very long (46.6 µm), thick (3.74 µm) and non-biodurable fibres with a low content of metals. According to the fibre potential toxicity index (FPTI) model, wollastonite NYAD G is an inert mineral fibre that is expected to exert a low biological response during in vitro/in vivo testing.
Journal Article