Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
100 result(s) for "Mito Communication"
Sort by:
Molecular and morphological evidences resolve taxonomic ambiguity between Systomus sarana sarana (Hamilton, 1822) and S. sarana subnasutus (Valenciennes) and suggest elevating them into distinct species
Taxonomic ambiguity exists in genus Systomus and recently many new species were described under this genus. Systomus sarana subnasutus is considered a valid subspecies of S. sarana sarana although revisions have been done by some researchers. We employed a combination of morpho-meristics and molecular tools (Cytochrome c oxidase I, 16S and Cytochrome b genes of mitochondrial genome) to resolve the two species. Three morpho-meristic characters, head length/maxillary barbel length (HL/MxBL), Lateral Line Scales (LLSs) as well as two truss-based characters, had discernible variation between the two taxa. The sequence analysis (2353 nucleotides) depicted a separate clad of S. sarana subnasutus with high bootstrap support. The findings from combined use of morphology, meristics and mitogenes were concordant. The corroborative results suggest the possibility of two different species. The results suggest to adopt suitable management measures, accordingly.
Hidden genetic diversity in snakeskin gourami, Trichopodus pectoralis (Perciformes, Osphronemidae), inferred from the mitochondrial DNA CO1 gene
Eighty-four specimens collected from 13 populations from Malaysia, Thailand, and Vietnam were analysed, revealing 21 putative haplotypes with overall estimated haplotype and nucleotide diversities of 0.79 and 0.0079, respectively. High levels of diversity and an absence of founder effects were observed among populations in peninsular Malaysia. In contrast, populations from Sarawak exhibited low genetic diversity, which is a typical sign of colonies introduced from a single source. Historical translocation of Trichopodus pectoralis from Thailand to Malaysia, as well as to the Philippines, Indonesia, and Myanmar was apparent. Historical introduction of T. pectoralis from Vietnam was also detected in peninsular Malaysia.
DNA barcoding of selected Scirtothrips species (Thysanoptera) from India
The members of the genus Scirtothrips are highly polyphagous, including major pest and vector species. We applied both morphology and molecular approaches to delimit the selected Scirtothrips species from India. Out of 43 generated barcode sequences, six sequences of three species (S. hitam, S. mangiferae, and S. malayensis) are the novel contribution in global database. The Bayesian (BA) phylogeny clearly distinguishes all the studied species with reciprocal monophyletic criteria and represents multiple clades in S. dorsalis and S. oligochaetus. The high Kimura-2-Parameter (K2P) genetic divergences were observed between the multiple clades of S. dorsalis (4.5-8.8%) and S. oligochaetus (6.4%), which indicating possible existence of cryptic diversity. The current study also provided the morphological keys for six Scirtothrips species including S. hitam as a new record to India.
Evaluating the accuracy of morphological identification of insect pests of rice crops using DNA barcoding
Accurate identification of agricultural pests is key requirement for the successful integrated pest management (IPM) program. However, due to limitations of conventional morphological methods, other molecular method like DNA barcoding is used. The current study was designed to evaluate the accuracy of morphological identification of insect pests using DNA barcoding. Morphologically, a total of 247 insect pests, representing 10 families, 18 genera, 22 species were identified. However, molecular identifications confirmed the presence of 11 families, 16 genera, and 20 species of agricultural pests. A total of 59 specimens were processed for DNA barcoding but genomic sequences of mt COI gene up to 600 bp were revived from 48 samples. Specimens that were misidentified through morphological studies were placed to their appropriate taxon, using this molecular approach. Results revealed the existence of clear barcode gap for different pest species. Moreover, the values of distance with the nearest neighbour recorded were higher than the maximum intra-sequence divergences for all species. It is concluded that DNA barcoding is a reliable technique for identification of agricultural pests, especially for immature stages when morphometric studies are ambiguous and will be helpful in the development of more effective pest management options for regulating pest species.
Complete mitochondrial genome of the hybrid grouper Epinephelus lanceolatus (♀) × E. moara (♂)
The complete mitochondrial genome of the novel hybrid grouper (Epinephelus lanceolatus ♀ and E. moara ♂) includes 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNA genes, and 1 control region (D-loop), for a total length of 16,743 bp. The overall nucleotide compositions encoded on the heavy strand are 29.73% A, 28.84% C, 15.08% G, and 26.64% T.
Mitochondrial genomes of the bird genus Piranga: rates of sequence evolution, and discordance between mitochondrial and nuclear markers
We report the characteristics of the mitochondrial genomes of 22 individuals in the bird genus Piranga, including all currently recognized species in the genus (n = 11). Elements follow the standard avian mitogenome series, including two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, 13 protein coding genes, and the mitochondrial control region. Excluding tRNA sequences, sequence divergence rate was lowest in rRNA genes and highest in genes encoding NADH (specifically ND1, ND2, ND3) and the control region. Gene trees assembled from 16 elements (non-tRNAs) varied greatly in topological concordance compared to the recognized species tree (based on thousands of nuclear loci), with no one gene tree precisely recovering all relationships in the genus. We also investigated patterns of concordance between the mitogenome tree and the nuclear species tree and found some discrepancies. Across non-tRNA gene trees (n = 16), the species tree topology was recovered by as few as three elements at a particular node and complete concordance (i.e. 16/16 gene trees matched the species tree topology) was recovered at only one node. We found mitochondrial gene regions that are often used in vertebrate systematics (e.g. CytB, ND2) recovered nearly the exact same topology as the nuclear species tree topology.
Pet and turtle: DNA barcoding identified twelve Geoemydid species in northeast India
Geoemydid turtles are one of the most imperilled fauna on the planet, with nearly half of them are threatened with extinction due to bushmeat crisis, traditional medicine, and the illegal pet trade. Classical taxonomy often fails to identify the pet-kept turtle specimens due to amorphous form, unusual shell colouration owing to poor storage in captivity or intensely tinted for high demanding value. The DNA barcoding technique has evidenced as a supportive tool for accurate species identification in systematics research and discerned the nameless taxa in forensic sciences. We tested the effectiveness of DNA barcoding tools for identifying the pet-kept Geoemydid turtle in northeast India. The 36 generated sequences are readily delineated into 12 Geoemydid species using molecular data. The overall mean genetic distance of the studied Geoemydid turtles dataset is 15.3% and ranges from 3.4% to 22.6% between the species. The NJ, ML and Bayesian phylogeny also resulted monophyletic clustering and discriminated all the studied species. The present study contributes DNA barcode sequences of Geoemydid turtles in the global database and also affirms the on-going illegal pet trade of highly threatened species in northeast India.
DNA barcoding of freshwater fishes from Brahmaputra River in Eastern Himalaya biodiversity hotspot
The genetic diversity of freshwater fishes is still anonymous in several drainage systems in northeast India. Moreover, the comparative genetic analysis is largely sporadic to judge their actual diversity and true status. We generated 89 DNA barcodes of 40 morphologically identified fishes collected from two major tributaries of Brahmaputra River. The comparative study revealed that most of the species were clearly discriminated by their estimated genetic distances and monophyletic clustering in Bayesian (BA) tree. Considering the genetic divergence (2%) for species discrimination boundary, the high genetic diversity (2.36-10.73%) was detected in 11 species (Macrognathus pancalus, Channa punctata, Puntius terio, Bangana ariza, Garra arupi, Badis badis, Mystus vittatus, Rita rita, Gagata cenia, Mastacembelus armatus, and Danio dangila), which signified the occurrence of concealed genetic diversity in this ecozone. However, the insignificant genetic distances were also noticed in few reportedly valid species: Channa stiktos and C. ornatipinnis (1.43%); Mystus ngasep, M. rufescens, and M. carcio (0.4%); Glyptothorax trilineatus, G. churamanii, and G. verrucosus (0.4%); Botia almorhae, B. histrionica, B. lohachata, and B. rostrata (0-0.4%); Barilius barilia and B. vagra (0.4%); Batasio merianiensis and B. tengana (1.2%); Puntius chola and P. fraseri (0%), Schistura beavani and S. paucireticulata (0%); hence to validate this species, generation of more barcode data was required from their types or topotypes. The present study would help to develop conservation schemes for the native species and collegiate ecosystem, which associated with the livelihoods of millions of ethnic communities in this region.
Genomic insights into the mitochondria of 11 eastern North American species of Cladonia
Cladonia is among the most species-rich genera of lichens globally. Species in this lineage, commonly referred to as reindeer lichens, are ecologically important in numerous regions worldwide. In some locations, species of Cladonia can comprise the dominant groundcover, and are a major food source for caribou and other mammals. Additionally, many species are known to produce substances with antimicrobial properties or other characteristics with potentially important medical applications. This exceptional morphological and ecological variation contrasts sharply with the limited molecular divergence often observed among species. As a new resource to facilitate ongoing and future studies of these important species, we analyse here the sequences of 11 Cladonia mitochondrial genomes, including new mitochondrial genome assemblies and annotations representing nine species: C. apodocarpa, C. caroliniana, C. furcata, C. leporina, C. petrophila, C. peziziformis, C. robbinsii, C. stipitata, and C. subtenuis. These 11 genomes varied in size, intron content, and complement of tRNAs. Genes annotated within these mitochondrial genomes include 15 protein-coding genes, the large and small ribosomal subunits (mtLSU and mtSSU), and 23-26 tRNAs. All Cladonia mitochondrial genomes contained atp9, an important energy transport gene that has been lost evolutionarily in some lichen mycobiont mitochondria. Using a concatenated alignment of five mitochondrial genes (nad2, nad4, cox1, cox2, and cox3), a Bayesian phylogeny of relationships among species was inferred and was consistent with previously published phylogenetic relationships, highlighting the utility of these regions in reconstructing phylogenetic history.
Complete mitochondrial genome of Idioscopus nitidulus (Hemiptera: Cicadellidae)
The complete mitogenome of Idioscopus nitidulus (Cicadellidae) was sequenced. It comprises 15,287 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and a control region. The phylogenetic analyses based on concatenated thirteen protein-coding genes of mitogenomes recover the monophyly of Auchenorrhyncha (Fulgoromorpha + Cicadomorpha) and Sternorrhyncha as a sister group to Auchenorrhyncha. The complete mitogenome sequence of Idioscopus nitidulusis available in the GenBank with accession number: KR024406.