Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
15,065
result(s) for
"Mitochondrial apoptosis"
Sort by:
Tannic acid inhibits EGFR/STAT1/3 and enhances p38/STAT1 signalling axis in breast cancer cells
by
Darvin, Pramod
,
Hwang, Tae Sook
,
Joung, Youn Hee
in
Apoptosis - drug effects
,
Breast Neoplasms - metabolism
,
Breast Neoplasms - pathology
2017
Tannic acid (TA), a naturally occurring polyphenol, is a potent anti‐oxidant with anti‐proliferative effects on multiple cancers. However, its ability to modulate gene‐specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non‐canonical STAT pathways to impose the gene‐specific induction of G1‐arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1‐arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non‐canonical STAT pathways, each with a specific role in TA‐induced anti‐cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA‐binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1. However, TA binds to EGF‐R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL‐2 DNA‐binding activity. As a result, the expression and mitochondrial localization of BCl‐2 are declined. This altered expression and localization of mitochondrial anti‐pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF‐R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1‐arrest and intrinsic apoptosis in breast carcinomas.
Journal Article
The Key Roles of GSK-3β in Regulating Mitochondrial Activity
by
Shi, Weimei
,
Wu, Longhuo
,
Yang, Kai
in
Alzheimer Disease - drug therapy
,
Alzheimer's disease
,
Animals
2017
Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, has been reported to show essential roles in molecular pathophysiology of many diseases. Mitochondrion is a dynamic organelle for producing cellular energy and determining cell fates. Stress-induced translocated GSK-3β may interact with mitochondrial proteins, including PI3K-Akt, PGC-1α, HK II, PKCε, components of respiratory chain, and subunits of mPTP. Mitochondrial pool of GSK-3β has been implicated in mediation of mitochondrial functions. GSK-3β exhibits the regulatory effects on mitochondrial biogenesis, mitochondrial bioenergetics, mitochondrial permeability, mitochondrial motility, and mitochondrial apoptosis. The versatile functions of GSK-3β might be associated with its wide range of substrates. Accumulative evidence demonstrates that GSK-3β inactivation may be potentially developed as the promising strategy in management of many diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Intensive efforts have been made for exploring GSK-3β inhibitors. Natural products provide us a great source for screening new lead compounds in inactivation of GSK-3β. The key roles of GSK-3β in mediation of mitochondrial functions are discussed in this review.
Journal Article
Mitophagy, Mitochondrial Homeostasis, and Cell Fate
2020
Mitochondria are highly plastic and dynamic organelles that have graded responses to the changing cellular, environmental, and developmental cues. Mitochondria undergo constant mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy, which coordinately control mitochondrial morphology, quantity, quality, turnover, and inheritance. Mitophagy is a cellular process that selectively removes the aged and damaged mitochondria via the specific sequestration and engulfment of mitochondria for subsequent lysosomal degradation. It plays a pivotal role in reinstating cellular homeostasis in normal physiology and conditions of stress. Damaged mitochondria may either instigate innate immunity through the overproduction of ROS or the release of mtDNA, or trigger cell death through the release of cytochrome c and other apoptogenic factors when mitochondria damage is beyond repair. Distinct molecular machineries and signaling pathways are found to regulate these mitochondrial dynamics and behaviors. It is less clear how mitochondrial behaviors are coordinated at molecular levels. BCL2 family proteins interact within family members to regulate mitochondrial outer membrane permeabilization and apoptosis. They were also described as global regulators of mitochondrial homeostasis and mitochondrial fate through their interaction with distinct partners including Drp1, mitofusins, PGAM5, and even LC3 that involved mitochondrial dynamics and behaviors. In this review, we summarize recent findings on molecular pathways governing mitophagy and its coordination with other mitochondrial behaviors, which together determine cellular fate.
Journal Article
Mitochondrial MPTP: A Novel Target of Ethnomedicine for Stroke Treatment by Apoptosis Inhibition
2020
Mammalian mitochondrial permeability transition pore (MPTP), across the inner and outer membranes of mitochondria, is a nonspecific channel for signal transduction or material transfer between mitochondrial matrix and cytoplasm such as maintenance of Ca
homeostasis, regulation of oxidative stress signals, and protein translocation evoked by some of stimuli. Continuous MPTP opening has been proved to stimulate neuronal apoptosis in ischemic stroke. Meanwhile, inhibition of MPTP overopening-induced apoptosis has shown excellent efficacy in the treatment of ischemic stroke. Among of which, the potential molecular mechanisms of drug therapy for stroke has also been gradually revealed by researchers. The characteristics of multi-components or multi-targets for ethnic drugs also provide the possibility to treat stroke from the perspective of mitochondrial MPTP. The advantages mentioned above make it necessary for us to explore and clarify the new perspective of ethnic medicine in treating stroke and to determine the specific molecular mechanisms through advanced technologies as much as possible. In this review, we attempt to uncover the relationship between abnormal MPTP opening and neuronal apoptosis in ischemic stroke. We further summarized currently authorized drugs, ethnic medicine prescriptions, herbs, and identified monomer compounds for inhibition of MPTP overopening-induced ischemic neuron apoptosis. Finally, we strive to provide a new perspective and enlightenment for ethnic medicine in the prevention and treatment of stroke by inhibition of MPTP overopening-induced neuronal apoptosis.
Journal Article
Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics
by
Mahapatra, Kewal K
,
Panigrahi, Debasna P
,
Sethi, Gautam
in
Apoptosis
,
Cancer
,
Cancer therapies
2019
The efficacy of chemotherapy is mostly restricted by the drug resistance developed during the course of cancer treatment. Mitophagy, as a pro-survival mechanism, crucially maintains mitochondrial homeostasis and it is one of the mechanisms that cancer cells adopt for their progression. On the other hand, mitochondrial apoptosis, a precisely regulated form of cell death, acts as a tumor-suppressive mechanism by targeting cancer cells. Mitochondrial lipids, such as cardiolipin, ceramide, and sphingosine-1-phosphate, act as a mitophageal signal for the clearance of damaged mitochondria by interacting with mitophagic machinery as well as activate mitochondrial apoptosis via the release of cytochrome c into the cytoplasm. In the recent time, the lipid-mediated lethal mitophagy has also been used as an alternative approach to abolish the survival role of lipid in cancer. Therefore, by targeting mitochondrial lipids in cancer cells, the detailed mechanism linked to drug resistance can be unraveled. In this review, we precisely discuss the current knowledge about the multifaceted role of mitochondrial lipid in regulating mitophagy and mitochondrial apoptosis and its application in effective cancer therapy.
Journal Article
Mst1 promotes cardiac ischemia–reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy
2019
Cardiac ischemia–reperfusion (I/R) injury results mainly from mitochondrial dysfunction and cardiomyocyte death. Mitophagy sustains mitochondrial function and exerts a pro-survival effect on the reperfused heart tissue. Mammalian STE20-like kinase 1 (Mst1) regulates chronic cardiac metabolic damage and autophagic activity, but its role in acute cardiac I/R injury, especially its effect on mitophagy, is unknown. The aim of this study is to explore whether Mst1 is involved in reperfusion-mediated cardiomyocyte death via modulation of FUN14 domain containing 1 (FUNDC1)-related mitophagy. Our data indicated that Mst1 was markedly increased in reperfused hearts. However, genetic ablation of Mst1 in Mst1-knockout (Mst1-KO) mice significantly reduced the expansion of the cardiac infarction area, maintained myocardial function and abolished I/R-mediated cardiomyocyte death. At the molecular level, upregulation of Mst1 promoted ROS production, reduced mitochondrial membrane potential, facilitated the leakage of mitochondrial pro-apoptotic factors into the nucleus, and activated the caspase-9-related apoptotic pathway in reperfused cardiomyocytes. Mechanistically, Mst1 activation repressed FUNDC1 expression and consequently inhibited mitophagy. However, deletion of Mst1 was able to reverse FUNDC1 expression and thus re-activate protective mitophagy, effectively sustaining mitochondrial homeostasis and blocking mitochondrial apoptosis in reperfused cardiomyocytes. Finally, we demonstrated that Mst1 regulated FUNDC1 expression via the MAPK/ERK-CREB pathway. Inhibition of the MAPK/ERK-CREB pathway prevented FUNDC1 activation caused by Mst1 deletion. Altogether, our data confirm that Mst1 deficiency sends a pro-survival signal for the reperfused heart by reversing FUNDC1-related mitophagy and thus reducing cardiomyocyte mitochondrial apoptosis, which identifies Mst1 as a novel regulator for cardiac reperfusion injury via modulation of mitochondrial homeostasis.
Journal Article
A yeast BH3-only protein mediates the mitochondrial pathway of apoptosis
2011
Mitochondrial outer membrane permeabilization is a watershed event in the process of apoptosis, which is tightly regulated by a series of pro‐ and anti‐apoptotic proteins belonging to the BCL‐2 family, each characteristically possessing a BCL‐2 homology domain 3 (BH3). Here, we identify a yeast protein (Ybh3p) that interacts with BCL‐X
L
and harbours a functional BH3 domain. Upon lethal insult, Ybh3p translocates to mitochondria and triggers BH3 domain‐dependent apoptosis. Ybh3p induces cell death and disruption of the mitochondrial transmembrane potential via the mitochondrial phosphate carrier Mir1p. Deletion of Mir1p and depletion of its human orthologue (SLC25A3/PHC) abolish stress‐induced mitochondrial targeting of Ybh3p in yeast and that of BAX in human cells, respectively. Yeast cells lacking
YBH3
display prolonged chronological and replicative lifespans and resistance to apoptosis induction. Thus, the yeast genome encodes a functional BH3 domain that induces cell death through phylogenetically conserved mechanisms.
It has been assumed so far that yeast is devoid of BCL‐2 family members. This study identifies the yeast BCL‐2 homology domain 3 protein Ybh3p that triggers an intrinsic cell death pathway involving the mitochondrial phosphate carrier Mir1p.
Journal Article
Calcium hydroxide nanoparticles induce apoptotic cell death in human pancreatic cancer cells through over ROS-driven genomic instability and mitochondrial dysfunction
2025
The aggressive nature of pancreatic cancer, coupled with the limitations of current treatment options, underscores the urgent need for more effective and targeted therapies. Nanoparticle-based approaches offer promising alternatives, with calcium hydroxide nanoparticles (Ca(OH)
2
NPs) emerging as a potential candidate due to their biocompatibility, high alkalinity, and ability to modify the tumor microenvironment. However, their therapeutic potential against pancreatic cancer remains largely unexplored. This study thus estimated the effects of Ca(OH)
2
NPs on the viability of normal oral epithelial cells (OECs) and pancreatic cancer PANC-1 cells, moreover, the impact of Ca(OH)
2
NPs on genomic DNA and mitochondrial membrane integrity, reactive oxygen species (ROS) generation, and apoptosis induction in PANC-1 cells was assessed. Sulforhodamine B cytotoxicity assay demonstrated a strong, targeted concentration-dependent cytotoxic effect of Ca(OH)
2
NPs on PANC-1 cells following exposure to five different concentrations (0.01, 1, 10, 100, and 1000 µg/ml) for 72 h, with an IC50 value of 152.40 µg/ml. In contrast, minimal cytotoxicity was observed in normal OECs, which had an IC50 value of 481.66 µg /ml. The calculated selectivity index of 3.16 further confirmed the preferential cytotoxicity of Ca(OH)
2
NPs towards PANC-1 cells. Moreover, exposure of PANC-1 cells to the IC50 concentration of Ca(OH)
2
NPs (152.40 µg/ml) led to excessive ROS generation, marked genomic instability, and loss of mitochondrial membrane integrity. These effects were accompanied by dysregulation of key apoptotic genes, including upregulation of p53 and mitochondrial ND3, along with downregulation of the anti-apoptotic Bcl-2 gene, ultimately inducing mitochondrial apoptosis in PANC-1 cells. Ca(OH)
2
NPs exhibit potent, selective cytotoxicity against PANC-1 cells while exerting minimal toxicity on normal OECs. Their mechanism of action appears to involve excessive ROS generation, leading to severe genomic DNA and mitochondrial damage, ultimately triggering apoptosis in pancreatic cancer cells. These findings highlight the potential of Ca(OH)
2
NPs as a novel therapeutic agent for pancreatic cancer. However, further in vitro and in vivo studies are warranted to fully explore their clinical applicability and underlying molecular mechanisms in pancreatic cancer treatment.
Journal Article
CTSB promotes sepsis-induced acute kidney injury through activating mitochondrial apoptosis pathway
by
Liu, Boyang
,
Zhang, Xinyi
,
Zheng, Xiaoming
in
Acute Kidney Injury - metabolism
,
Animals
,
Annexin V
2023
Acute kidney injury is a common and severe complication of sepsis. Sepsis -induced acute kidney injury(S-AKI) is an independent risk factor for mortality among sepsis patients. However, the mechanisms of S-AKI are complex and poorly understand. Therefore, exploring the underlying mechanisms of S-AKI may lead to the development of therapeutic targets.
A model of S-AKI was established in male C57BL/6 mice using cecal ligation and puncture (CLP). The data-independent acquisition (DIA)-mass spectrometry-based proteomics was used to explore the protein expression changes and analyze the key proteomics profile in control and CLP group. The methodology was also used to identify the key proteins and pathways. S-AKI
was established by treating the HK-2 cells with lipopolysaccharide (LPS). Subsequently, the effect and mechanism of Cathepsin B (CTSB) in inducing apoptosis in HK-2 cells were observed and verified.
The renal injury scores, serum creatinine, blood urea nitrogen, and kidney injury molecule 1 were higher in septic mice than in non-septic mice. The proteomic analysis identified a total of 449 differentially expressed proteins (DEPs). GO and KEGG analysis showed that DEPs were mostly enriched in lysosomal-related cell structures and pathways. CTSB and MAPK were identified as key proteins in S-AKI. Electron microscopy observed enlarged lysosomes, swelled and ruptured mitochondria, and cytoplasmic vacuolization in CLP group. TUNEL staining and CTSB activity test showed that the apoptosis and CTSB activity were higher in CLP group than in control group. In HK-2 cell injury model, the CTSB activity and mRNA expression were increased in LPS-treated cells. Acridine orange staining showed that LPS caused lysosomal membrane permeabilization (LMP). CA074 as an inhibitor of CTSB could effectively inhibit CTSB activity. CCK8 and Annexin V/PI staining results indicated that CA074 reversed LPS-induced apoptosis of HK-2 cells. The JC-1 and western blot results showed that LPS inhibited mitochondrial membrane potential and activated mitochondrial apoptosis pathway, which could be reversed by CA074.
LMP and CTSB contribute to pathogenesis of S-AKI. LPS treatment induced HK-2 cell injury by activating mitochondrial apoptosis pathway. Inhibition of CTSB might be a new therapeutic strategy to alleviate sepsis-induced acute kidney injury.
Journal Article
Potential Antitumor Effects of 6-Gingerol in p53-Dependent Mitochondrial Apoptosis and Inhibition of Tumor Sphere Formation in Breast Cancer Cells
by
Lee, Jin-Moo
,
Sp, Nipin
,
Bae, Se Won
in
Antineoplastic Agents, Phytogenic - pharmacology
,
Apoptosis
,
Apoptosis - drug effects
2021
Hormone-specific anticancer drugs for breast cancer treatment can cause serious side effects. Thus, treatment with natural compounds has been considered a better approach as this minimizes side effects and has multiple targets. 6-Gingerol is an active polyphenol in ginger with various modalities, including anticancer activity, although its mechanism of action remains unknown. Increases in the level of reactive oxygen species (ROS) can lead to DNA damage and the induction of DNA damage response (DDR) mechanism, leading to cell cycle arrest apoptosis and tumorsphere suppression. Epidermal growth factor receptor (EGFR) promotes tumor growth by stimulating signaling of downstream targets that in turn activates tumor protein 53 (p53) to promote apoptosis. Here we assessed the effect of 6-gingerol treatment on MDA-MB-231 and MCF-7 breast cancer cell lines. 6-Gingerol induced cellular and mitochondrial ROS that elevated DDR through ataxia-telangiectasia mutated and p53 activation. 6-Gingerol also induced G0/G1 cell cycle arrest and mitochondrial apoptosis by mediating the BAX/BCL-2 ratio and release of cytochrome c. It also exhibited a suppression ability of tumorsphere formation in breast cancer cells. EGFR/Src/STAT3 signaling was also determined to be responsible for p53 activation and that 6-gingerol induced p53-dependent intrinsic apoptosis in breast cancer cells. Therefore, 6-gingerol may be used as a candidate drug against hormone-dependent breast cancer cells.
Journal Article