Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
18,392 result(s) for "Mitogen-Activated Protein Kinases - metabolism"
Sort by:
The Map3k12 (Dlk)/JNK3 signaling pathway is required for pancreatic beta-cell proliferation during postnatal development
Unveiling the key pathways underlying postnatal beta-cell proliferation can be instrumental to decipher the mechanisms of beta-cell mass plasticity to increased physiological demand of insulin during weight gain and pregnancy. Using transcriptome and global Serine Threonine Kinase activity (STK) analyses of islets from newborn (10 days old) and adult rats, we found that highly proliferative neonatal rat islet cells display a substantially elevated activity of the mitogen activated protein 3 kinase 12, also called dual leucine zipper-bearing kinase (Dlk). As a key upstream component of the c-Jun amino terminal kinase (Jnk) pathway, Dlk overexpression was associated with increased Jnk3 activity and was mainly localized in the beta-cell cytoplasm. We provide the evidence that Dlk associates with and activates Jnk3, and that this cascade stimulates the expression of Ccnd1 and Ccnd2, two essential cyclins controlling postnatal beta-cell replication. Silencing of Dlk or of Jnk3 in neonatal islet cells dramatically hampered primary beta-cell replication and the expression of the two cyclins. Moreover, the expression of Dlk,Jnk3,Ccnd1 and Ccnd2 was induced in high replicative islet beta cells from ob/ob mice during weight gain, and from pregnant female rats. In human islets from non-diabetic obese individuals, DLK expression was also cytoplasmic and the rise of the mRNA level was associated with an increase of JNK3,CCND1andCCND2 mRNA levels, when compared to islets from lean and obese patients with diabetes. In conclusion, we find that activation of Jnk3 signalling by Dlk could be a key mechanism for adapting islet beta-cell mass during postnatal development and weight gain.
Phosphothreonine Lyase Activity of a Bacterial Type III Effector Family
Pathogenic bacteria use the type III secretion system to deliver effector proteins into host cells to modulate the host signaling pathways. In this study, the Shigella type III effector OspF was shown to inactivate mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated kinases 1 and 2 (Erk1/2), c-Jun N-terminal kinase, and p38]. OspF irreversibly removed phosphate groups from the phosphothreonine but not from the phosphotyrosine residue in the activation loop of MAPKs. Mass spectrometry revealed a mass loss of 98 daltons in p-Erk2, due to the abstraction of the α proton concomitant with cleavage of the C-OP bond in the phosphothreonine residue. This unexpected enzymatic activity, termed phosphothreonine lyase, appeared specific for MAPKs and was shared by other OspF family members.
TRPV1 Potentiates TGFβ-Induction of Corneal Myofibroblast Development through an Oxidative Stress-Mediated p38-SMAD2 Signaling Loop
Injuring mouse corneas with alkali causes myofibroblast expression leading to tissue opacification. However, in transient receptor potential vanilloid 1 channel (TRPV1-/-) knockout mice healing results in transparency restoration. Since TGFβ is the primary inducer of the myofibroblast phenotype, we examined the mechanism by which TRPV1 affects TGFβ-induced myofibroblast development. Experiments were performed in pig corneas and human corneal fibroblasts (HCFs). Immunohistochemical staining of α-smooth muscle actin (α-SMA) stress fibers was used to visualize myofibroblasts. Protein and phosphoprotein were determined by Western blotting. siRNA transfection silenced TRPV1 gene expression. Flow cytometry with a reactive oxygen species (ROS) reporting dye analyzed intracellular ROS. [Ca2+]I was measured by loading HCF with fura2. In organ cultured corneas, the TRPV1 antagonist capsazepine drastically reduced by 75% wound-induced myofibroblast development. In HCF cell culture, TGF-β1 elicited rapid increases in Ca2+ influx, phosphorylation of SMAD2 and MAPKs (ERK1/2, JNK1/2 and p38), ROS generation and, after 72 hrs myofibroblast development. SMAD2 and p38 activation continued for more than 16 h, whereas p-ERK1/2 and p-JNK1/2 waned within 90 min. The long-lived SMAD2 activation was dependent on activated p38 and vice versa, and it was essential to generate a > 13-fold increase in α-SMA protein and a fully developed myofibroblast phenotype. These later changes were markedly reduced by inhibition of TRPV1 or reduction of the ROS generation rate. Taken together our results indicate that in corneal derived fibroblasts, TGFβ- induced myofibroblast development is highly dependent on a positive feedback loop where p-SMAD2-induced ROS activates TRPV1, TRPV1 causes activation of p38, the latter in turn further enhances the activation of SMAD2 to establish a recurrent loop that greatly extends the residency of the activated state of SMAD2 that drives myofibroblast development.
GLP-1 and Ghrelin Attenuate High Glucose/High Lipid-Induced Apoptosis and Senescence of Human Microvascular Endothelial Cells
Background/Aims: GLP-1 and ghrelin are common appetite-regulating hormones. Both have multiple functions beyond metabolic regulation. However, the effects of GLP-1 and ghrelin on endothelial biology are not fully understood. Here, we investigate the roles of GLP-1 and ghrelin in microvascular endothelial apoptosis and senescence. Methods: Human microvascular endothelial cells (HMECs) were exposed to high glucose/high lipid (HG/HL) conditions and treated with GLP-1 or ghrelin. Cellular apoptosis, senescence, and mitochondrial function were measured. In addition, the MAPK and Akt signaling pathways were examined. Results: Both GLP-1 and ghrelin treatment decreased the number of TUNEL-positive cells and inhibited caspase-3 and PARP cleavage and mitochondrial dysfunction in HG/HL-exposed HMECs. GLP-1, but not ghrelin decreased the number of β-galactosidase (β-gal)-positive cells. Furthermore, GLP-1 and ghrelin inhibited ERK1/2, JNK1/2, and p38 signaling. GLP-1 suppressed Akt signaling, but ghrelin had no effect. Moreover, JNK1/2 and p38 inhibitors, but not ERK1/2 and Akt inhibitors, decreased the number of TUNEL-positive cells. Additionally, only the Akt inhibitor decreased the number of β-gal-positive cells. Conclusion: These results demonstrate that GLP-1 and ghrelin inhibit mitochondrial dysfunction under HG/HL conditions, and suppress endothelial apoptosis via inhibiting JNK1/2 and p38 signaling; moreover, GLP-1 alleviates endothelial senescence via inactivating Akt signaling.
MKP-5 Relieves Lipotoxicity-Induced Islet β-Cell Dysfunction and Apoptosis via Regulation of Autophagy
Mitogen-activated protein kinase phosphatase-5 (MKP-5) is a regulator of extracellular signaling that is known to regulate lipid metabolism. In this study, we found that obesity caused by a high-fat diet (HFD) decreased the expression of MKP-5 in the pancreas and primary islet cells derived from mice. Then, we further investigated the role of MKP-5 in the protection of islet cells from lipotoxicity by modulating MKP-5 expression. As a critical inducer of lipotoxicity, palmitic acid (PA) was used to treat islet β-cells. We found that MKP-5 overexpression restored PA-mediated autophagy inhibition in Rin-m5f cells and protected these cells from PA-induced apoptosis and dysfunction. Consistently, a lack of MKP-5 aggravated the adverse effects of lipotoxicity. Islet cells from HFD-fed mice were infected using recombinant adenovirus expressing MKP-5 (Ad-MKP-5), and we found that Ad-MKP-5 was able to alleviate HFD-induced apoptotic protein activation and relieve the HFD-mediated inhibition of functional proteins. Notably, HFD-mediated impairments in autophagic flux were restored by Ad-MKP-5 transduction. Furthermore, the autophagy inhibitor 3-methyladenine (3-MA) was used to treat Rin-m5f cells, confirming that the MKP-5 overexpression suppressed apoptosis, dysfunction, inflammatory response, and oxidative stress induced by PA via improving autophagic signaling. Lastly, employing c-Jun amino-terminal kinas (JNK), P38, or extracellular-regulated kinase (ERK) inhibitors, we established that the JNK and P38 MAPK pathways were involved in the MKP-5-mediated apoptosis, dysfunction, and autophagic inhibition observed in islet β cells in response to lipotoxicity.
Crosstalk between mitogen-activated protein kinase inhibitors and transforming growth factor-β signaling results in variable activation of human dermal fibroblasts
Fibroblast activation is a key step in the establishment of skin fibrosis induced by acute injury, and it is characterized by the differentiation of plastic resident tissue fibroblasts into contractile, extracellular matrix-secreting myofibroblasts. As fibroblast activation must be regulated in vivo, fibroblasts receive signals from the surrounding environment that initiate their fibrotic program. Thus, the present study investigated the effects of mitogen-activated protein kinase (MAPK) signaling pathways on fibroblast activation. It was demonstrated in primary human dermal fibroblasts that small molecule-mediated inhibition of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) potentiated fibroblast activation, and that small molecule-mediated inhibition of p38 antagonized fibroblast activation. ERK and JNK inhibition cooperatively enhanced fibroblast activation mediated by treatment with exogenous transforming growth factor (TGF)-β1, and p38 inhibition antagonized ERK inhibitor-mediated or JNK inhibitor-mediated fibroblast activation. Transcript analysis demonstrated that ERK and JNK inhibitor-mediated fibroblast activation was accompanied by distinct changes in the expression of TGF-β-associated ligands and receptors, and that p38 inhibitor-mediated antagonism of fibroblast activation was accompanied by a distinct expression paradigm of TGF-β-associated genes, including upregulation of beta-glycan. ERK inhibitor-mediated and JNK inhibitor-mediated fibroblast activation was partially antagonized by small molecule-mediated inhibition of TGF-β receptor (R)1, indicating that these mechanisms of fibroblast activation are partially dependent on TGF-β/TGF-βR signaling. These data collectively demonstrate and provide partial explanations of the varied effects and pathway dependencies of MAPK inhibitor-mediated effects on fibroblast activation.
Brefeldin A-Inhibited Guanine Nucleotide-Exchange Factor 1 (BIG1) Governs the Recruitment of Tumor Necrosis Factor Receptor-Associated Factor 2 (TRAF2) to Tumor Necrosis Factor Receptor 1 (TNFR1) Signaling Complexes
Tumor necrosis factor receptor-associated factor 2 (TRAF2) is a critical mediator of tumor necrosis factor-α (TNF-α) signaling. However, the regulatory mechanisms of TRAF2 are not fully understood. Here we show evidence that TRAF2 requires brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) to be recruited into TNF receptor 1 (TNFR1) signaling complexes. In BIG1 knockdown cells, TNF-α-induced c-Jun N-terminal kinase (JNK) activation was attenuated and the sensitivity to TNF-α-induced apoptosis was increased. Since these trends correlated well with those of TRAF2 deficient cells as previously demonstrated, we tested whether BIG1 functions as an upstream regulator of TRAF2 in TNFR1 signaling. As expected, we found that knockdown of BIG1 suppressed TNF-α-dependent ubiquitination of TRAF2 that is required for JNK activation, and impaired the recruitment of TRAF2 to the TNFR1 signaling complex (complex I). Moreover, we found that the recruitment of TRAF2 to the death-inducing signaling complex termed complex II was also impaired in BIG1 knockdown cells. These results suggest that BIG1 is a key component of the machinery that drives TRAF2 to the signaling complexes formed after TNFR1 activation. Thus, our data demonstrate a novel and unexpected function of BIG1 that regulates TNFR1 signaling by targeting TRAF2.
Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Müller cell gliosis
Our previous studies have demonstrated that activation of group I metabotropic glutamate receptors downregulated Kir channels in chronic ocular hypertension (COH) rats, thus contributing to Müller cell gliosis, characterized by upregulated expression of glial fibrillary acidic protein (GFAP). In the present study, we explored possible signaling pathways linking Kir channel inhibition and GFAP upregulation. In normal retinas, intravitreal injection of BaCl 2 significantly increased GFAP expression in Müller cells, which was eliminated by co-injecting mitogen-activated protein kinase (MAPK) inhibitor U0126. The protein levels of phosphorylated extracellular signal-regulated protein kinase1/2 (p-ERK1/2) and its upstream regulator, p-MEK, were significantly increased, while the levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and p38 kinase (p-p38) remained unchanged. Furthermore, the protein levels of phosphorylated cAMP response element binding protein (p-CREB) and c-fos were also increased, which were blocked by co-injecting ERK inhibitor FR180204. In purified cultured rat Müller cells, BaCl 2 treatment induced similar changes in these protein levels apart from p-p38 levels and the p-p38:p38 ratio showing significant upregulation. Moreover, intravitreal injection of U0126 eliminated the upregulated GFAP expression in COH retinas. Together, these results suggest that Kir channel inhibition-induced Müller cell gliosis is mediated by the MEK-ERK/p38-CREB/c-fos signaling pathway.
Farrerol Ameliorates TNBS-Induced Colonic Inflammation by Inhibiting ERK1/2, JNK1/2, and NF-κB Signaling Pathway
Farrerol, a type of 2, 3-dihydro-flavonoid, is obtained from Rhododendron. Previous studies have shown that Farrerol performs multiple biological activities, such as anti-inflammatory, antibacterial, and antioxidant activity. In this study, we aim to investigate the effect of Farrerol on colonic inflammation and explore its potential mechanisms. We found that the effect of Farrerol was evaluated via the 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in mice and found that Farrerol has a protective effect on TNBS-induced colitis. Farrerol administration significantly improved the weight change, clinical scores, colon length, and intestinal epithelium barrier damage and markedly decreased the inflammatory cytokines production in TNBS-induced mice. The protective effect of Farrerol was also observed in LPS-induced RAW264.7 cells. We found that Farrerol observably reduced the production of inflammatory mediators including IL-1β, IL-6, TNF-α, COX-2, and iNOS in LPS-induced RAW264.7 cells via suppressing AKT, ERK1/2, JNK1/2, and NF-κB p65 phosphorylation. In conclusion, the study found that Farrerol has a beneficial effect on TNBS-induced colitis and might be a natural therapeutic agent for IBD treatment.
Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H₂O₂) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H₂O₂. Mechanistically, H₂O₂ induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H₂O₂ scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies.