Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Mixed multinomial probit"
Sort by:
Refining analytic approximation based estimation of mixed multinomial probit models by parameter selection
Applying analytic approximations for computing multivariate normal cumulative distribution functions has led to a substantial improvement in the estimability of mixed multinomial probit models, both in terms of accuracy and especially in terms of computation time. This paper makes a contribution by presenting a possible way to improve the accuracy of estimating mixed multinomial probit model covariances based on the idea of parameter selection using cross-validation. Comparisons to the MACML approach indicate that the proposed parameter selection approach is able to recover covariance parameters more accurately, even when there is a moderate degree of independence between the random coefficients. The approach also estimates parameters efficiently, with standard errors tending to be smaller than those of the MACML approach, which can be observed by means of a real data case.
Journal Article
Refining analytic approximation based estimation of mixed multinomial probit models by parameter selection
2024
Applying analytic approximations for computing multivariate normal cumulative distribution functions has led to a substantial improvement in the estimability of mixed multinomial probit models, both in terms of accuracy and especially in terms of computation time. This paper makes a contribution by presenting a possible way to improve the accuracy of estimating mixed multinomial probit model covariances based on the idea of parameter selection using cross-validation. Comparisons to the MACML approach indicate that the proposed parameter selection approach is able to recover covariance parameters more accurately, even when there is a moderate degree of independence between the random coefficients. The approach also estimates parameters efficiently, with standard errors tending to be smaller than those of the MACML approach, which can be observed by means of a real data case.
Journal Article