Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Mixed multinomial probit"
Sort by:
Refining analytic approximation based estimation of mixed multinomial probit models by parameter selection
Applying analytic approximations for computing multivariate normal cumulative distribution functions has led to a substantial improvement in the estimability of mixed multinomial probit models, both in terms of accuracy and especially in terms of computation time. This paper makes a contribution by presenting a possible way to improve the accuracy of estimating mixed multinomial probit model covariances based on the idea of parameter selection using cross-validation. Comparisons to the MACML approach indicate that the proposed parameter selection approach is able to recover covariance parameters more accurately, even when there is a moderate degree of independence between the random coefficients. The approach also estimates parameters efficiently, with standard errors tending to be smaller than those of the MACML approach, which can be observed by means of a real data case.
Refining analytic approximation based estimation of mixed multinomial probit models by parameter selection
Applying analytic approximations for computing multivariate normal cumulative distribution functions has led to a substantial improvement in the estimability of mixed multinomial probit models, both in terms of accuracy and especially in terms of computation time. This paper makes a contribution by presenting a possible way to improve the accuracy of estimating mixed multinomial probit model covariances based on the idea of parameter selection using cross-validation. Comparisons to the MACML approach indicate that the proposed parameter selection approach is able to recover covariance parameters more accurately, even when there is a moderate degree of independence between the random coefficients. The approach also estimates parameters efficiently, with standard errors tending to be smaller than those of the MACML approach, which can be observed by means of a real data case.