Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "Mn5O8"
Sort by:
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn 5 O 8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge–discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5 O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+ /Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5 O 8 . Rechargeable aqueous electrochemical energy storage is a promising technology but suffers from a narrow potential window. Here the authors report a surface hydroxylated Mn 5 O 8 pseudocapacitor electrode with bivalence structure that expands the potential window to deliver high energy and power performance.
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (1/41.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn 5 O 8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5 O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+ /Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5 O 8.