Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6,884
result(s) for
"Modeling languages (Computer science)"
Sort by:
PyMC: a modern, and comprehensive probabilistic programming framework in Python
by
Martin, Osvaldo A.
,
Andreani, Virgile
,
Carroll, Colin
in
Bayesian statistics
,
Data Science
,
Differential equations
2023
PyMC is a probabilistic programming library for Python that provides tools for constructing and fitting Bayesian models. It offers an intuitive, readable syntax that is close to the natural syntax statisticians use to describe models. PyMC leverages the symbolic computation library PyTensor, allowing it to be compiled into a variety of computational backends, such as C, JAX, and Numba, which in turn offer access to different computational architectures including CPU, GPU, and TPU. Being a general modeling framework, PyMC supports a variety of models including generalized hierarchical linear regression and classification, time series, ordinary differential equations (ODEs), and non-parametric models such as Gaussian processes (GPs). We demonstrate PyMC’s versatility and ease of use with examples spanning a range of common statistical models. Additionally, we discuss the positive role of PyMC in the development of the open-source ecosystem for probabilistic programming.
Journal Article
“What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter
2023
In this study, the author collected tweets about ChatGPT, an innovative AI chatbot, in the first month after its launch. A total of 233,914 English tweets were analyzed using the latent Dirichlet allocation (LDA) topic modeling algorithm to answer the question “what can ChatGPT do?”. The results revealed three general topics: news, technology, and reactions. The author also identified five functional domains: creative writing, essay writing, prompt writing, code writing, and answering questions. The analysis also found that ChatGPT has the potential to impact technologies and humans in both positive and negative ways. In conclusion, the author outlines four key issues that need to be addressed as a result of this AI advancement: the evolution of jobs, a new technological landscape, the quest for artificial general intelligence, and the progress-ethics conundrum.
Journal Article
Large language models (LLMs): survey, technical frameworks, and future challenges
Artificial intelligence (AI) has significantly impacted various fields. Large language models (LLMs) like GPT-4, BARD, PaLM, Megatron-Turing NLG, Jurassic-1 Jumbo etc., have contributed to our understanding and application of AI in these domains, along with natural language processing (NLP) techniques. This work provides a comprehensive overview of LLMs in the context of language modeling, word embeddings, and deep learning. It examines the application of LLMs in diverse fields including text generation, vision-language models, personalized learning, biomedicine, and code generation. The paper offers a detailed introduction and background on LLMs, facilitating a clear understanding of their fundamental ideas and concepts. Key language modeling architectures are also discussed, alongside a survey of recent works employing LLM methods for various downstream tasks across different domains. Additionally, it assesses the limitations of current approaches and highlights the need for new methodologies and potential directions for significant advancements in this field.
Journal Article
In-Context Retrieval-Augmented Language Models
by
Shashua, Amnon
,
Muhlgay, Dor
,
Shoham, Yoav
in
Attribution
,
Augmentation
,
Automatic text generation
2023
Retrieval-Augmented Language Modeling (RALM) methods, which condition a language model (LM) on relevant documents from a grounding corpus during generation, were shown to significantly improve language modeling performance. In addition, they can mitigate the problem of factually inaccurate text generation and provide natural source attribution mechanism. Existing RALM approaches focus on modifying the LM architecture in order to facilitate the incorporation of external information, significantly complicating deployment. This paper considers a simple alternative, which we dub
: leaving the LM architecture unchanged and prepending grounding documents to the input,
. We show that In-Context RALM that builds on off-the-shelf general purpose retrievers provides surprisingly large LM gains across model sizes and diverse corpora. We also demonstrate that the document retrieval and ranking mechanism can be specialized to the RALM setting to further boost performance. We conclude that In-Context RALM has considerable potential to increase the prevalence of LM grounding, particularly in settings where a pretrained LM must be used without modification or even via API access.
Journal Article
Benchmarking Large Language Models for News Summarization
2024
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood. By conducting a human evaluation on ten LLMs across different pretraining methods, prompts, and model scales, we make two important observations. First, we find instruction tuning, not model size, is the key to the LLM’s zero-shot summarization capability. Second, existing studies have been limited by low-quality references, leading to underestimates of human performance and lower few-shot and finetuning performance. To better evaluate LLMs, we perform human evaluation over high-quality summaries we collect from freelance writers. Despite major stylistic differences such as the amount of paraphrasing, we find that LLM summaries are judged to be on par with human written summaries.
Journal Article
Visual Spatial Reasoning
2023
Spatial relations are a basic part of human cognition. However, they are expressed in natural language in a variety of ways, and previous work has suggested that current vision-and-language models (VLMs) struggle to capture relational information. In this paper, we present Visual Spatial Reasoning (VSR), a dataset containing more than 10k natural text-image pairs with 66 types of spatial relations in English (e.g., under, in front of, facing). While using a seemingly simple annotation format, we show how the dataset includes challenging linguistic phenomena, such as varying reference frames. We demonstrate a large gap between human and model performance: The human ceiling is above 95%, while state-of-the-art models only achieve around 70%. We observe that VLMs’ by-relation performances have little correlation with the number of training examples and the tested models are in general incapable of recognising relations concerning the orientations of objects.
Journal Article
Probabilistic programming in Python using PyMC3
by
Salvatier, John
,
Fonnesbeck, Christopher
,
Wiecki, Thomas V.
in
Advantages
,
Algorithms
,
Bayesian analysis
2016
Probabilistic programming allows for automatic Bayesian inference on user-defined probabilistic models. Recent advances in Markov chain Monte Carlo (MCMC) sampling allow inference on increasingly complex models. This class of MCMC, known as Hamiltonian Monte Carlo, requires gradient information which is often not readily available. PyMC3 is a new open source probabilistic programming framework written in Python that uses Theano to compute gradients via automatic differentiation as well as compile probabilistic programs on-the-fly to C for increased speed. Contrary to other probabilistic programming languages, PyMC3 allows model specification directly in Python code. The lack of a domain specific language allows for great flexibility and direct interaction with the model. This paper is a tutorial-style introduction to this software package.
Journal Article
On Generative Spoken Language Modeling from Raw Audio
by
Bolte, Benjamin
,
Kharitonov, Eugene
,
Baevski, Alexei
in
Acoustics
,
Automatic text generation
,
Computation and Language
2021
We introduce
, the task of learning the acoustic and linguistic characteristics of a language from raw audio (no text, no labels), and a set of metrics to automatically evaluate the learned representations at acoustic and linguistic levels for both encoding and generation. We set up baseline systems consisting of a discrete speech encoder (returning pseudo-text units), a generative language model (trained on pseudo- text), and a speech decoder (generating a waveform from pseudo-text) all trained without supervision and validate the proposed metrics with human evaluation. Across 3 speech encoders (CPC, wav2vec 2.0, HuBERT), we find that the number of discrete units (50, 100, or 200) matters in a task-dependent and encoder- dependent way, and that some combinations approach text-based systems.
Journal Article
Transformer models for text-based emotion detection: a review of BERT-based approaches
2021
We cannot overemphasize the essence of contextual information in most natural language processing (NLP) applications. The extraction of context yields significant improvements in many NLP tasks, including emotion recognition from texts. The paper discusses transformer-based models for NLP tasks. It highlights the pros and cons of the identified models. The models discussed include the Generative Pre-training (GPT) and its variants, Transformer-XL, Cross-lingual Language Models (XLM), and the Bidirectional Encoder Representations from Transformers (BERT). Considering BERT’s strength and popularity in text-based emotion detection, the paper discusses recent works in which researchers proposed various BERT-based models. The survey presents its contributions, results, limitations, and datasets used. We have also provided future research directions to encourage research in text-based emotion detection using these models.
Journal Article