Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
675
result(s) for
"Molecular Diagnostic Techniques - standards"
Sort by:
Rapid isothermal amplification and portable detection system for SARS-CoV-2
by
Ganguli, Anurup
,
Sun, Fu
,
Valera, Enrique
in
Assaying
,
Betacoronavirus - genetics
,
Betacoronavirus - pathogenicity
2020
The COVID-19 pandemic provides an urgent example where a gap exists between availability of state-of-the-art diagnostics and current needs. As assay protocols and primer sequences become widely known, many laboratories perform diagnostic tests using methods such as RT-PCR or reverse transcription loop mediated isothermal amplification (RT-LAMP). Here, we report an RT-LAMP isothermal assay for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and demonstrate the assay on clinical samples using a simple and accessible point-of-care (POC) instrument. We characterized the assay by dipping swabs into synthetic nasal fluid spiked with the virus, moving the swab to viral transport medium (VTM), and sampling a volume of the VTM to perform the RT-LAMP assay without an RNA extraction kit. The assay has a limit of detection (LOD) of 50 RNA copies per μL in the VTM solution within 30 min. We further demonstrate our assay by detecting SARS-CoV-2 viruses from 20 clinical samples. Finally, we demonstrate a portable and real-time POC device to detect SARS-CoV-2 from VTM samples using an additively manufactured three-dimensional cartridge and a smartphone-based reader. The POC system was tested using 10 clinical samples, and was able to detect SARS-CoV-2 from these clinical samples by distinguishing positive samples from negative samples after 30 min. The POC tests are in complete agreement with RT-PCR controls. This work demonstrates an alternative pathway for SARS-CoV-2 diagnostics that does not require conventional laboratory infrastructure, in settings where diagnosis is required at the point of sample collection.
Journal Article
Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues
by
Ashton, Philip M
,
Suresh, Anita
,
Utpatel, Christian
in
Bioinformatics
,
Gene sequencing
,
Genomes
2019
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly progressed from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This development has been facilitated by drastic drops in cost, advances in technology and concerted efforts to translate sequencing data into actionable information. There is, however, a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonization, comparability and validation. In this Review, we outline the current landscape of WGS pipelines and applications, and set out best practices for M.tuberculosis WGS, including standards for bioinformatics pipelines, curated repositories of resistance-causing variants, phylogenetic analyses, quality control and standardized reporting.
Journal Article
Better Tests, Better Care: Improved Diagnostics for Infectious Diseases
by
Blaschke, Anne J.
,
Reller, L. Barth
,
Tenover, Fred C.
in
Antimicrobials
,
Better Tests, Better Care: Improved Diagnostics for Infectious Diseases
,
Communicable Diseases - diagnosis
2013
In this IDSA policy paper, we review the current diagnostic landscape, including unmet needs and emerging technologies, and assess the challenges to the development and clinical integration of improved tests. To fulfill the promise of emerging diagnostics, IDSA presents recommendations that address a host of identified barriers. Achieving these goals will require the engagement and coordination of a number of stakeholders, including Congress, funding and regulatory bodies, public health agencies, the diagnostics industry, healthcare systems, professional societies, and individual clinicians.
Journal Article
Diagnostic gene sequencing panels: from design to report—a technical standard of the American College of Medical Genetics and Genomics (ACMG)
by
Bayrak-Toydemir, Pinar
,
Funke, Birgit
,
Kantarci, Sibel
in
ACMG Technical Standards
,
Biomedical and Life Sciences
,
Biomedicine
2020
Gene sequencing panels are a powerful diagnostic tool for many clinical presentations associated with genetic disorders. Advances in DNA sequencing technology have made gene panels more economical, flexible, and efficient. Because the genes included on gene panels vary widely between laboratories in gene content (e.g., number, reason for inclusion, evidence level for gene–disease association) and technical completeness (e.g., depth of coverage), standards that address technical and clinical aspects of gene panels are needed. This document serves as a technical standard for laboratories designing, offering, and reporting gene panel testing. Although these principles can apply to multiple indications for genetic testing, the primary focus is on diagnostic gene panels (as opposed to carrier screening or predictive testing) with emphasis on technical considerations for the specific genes being tested. This technical standard specifically addresses the impact of gene panel content on clinical sensitivity, specificity, and validity—in the context of gene evidence for contribution to and strength of evidence for gene–disease association—as well as technical considerations such as sequencing limitations, presence of pseudogenes/gene families, mosaicism, transcript choice, detection of copy-number variants, reporting, and disclosure of assay limitations.
Journal Article
Molecular genetic testing and the future of clinical genomics
by
Katsanis, Nicholas
,
Katsanis, Sara Huston
in
Agriculture
,
Animal Genetics and Genomics
,
Animals
2013
Key Points
Clinical molecular genetic testing is transforming personalized medicine and is appropriate for a range of applications, such as rare disease diagnostics and predictive testing for common disorders.
Whole-exome and whole-genome sequencing may become a first-line clinical test for some naive diagnostic cases, but classic genetic tests will continue to be used for the high analytical sensitivity of specific defects and for the confirmation of genome findings.
There remains no single test to detect the wide array of genetic defects that may be inherited or arise
de novo
; clinical diagnostics requires multiple approaches to determine a causal genetic defect.
Although genome sequencing may transform diagnostic approaches in large academic medical centres, access to expensive and sophisticated tests are not universal. Genetic testing must be available globally through validated simple technologies for molecular diagnostics (such as direct PCR, linkage analysis or multiplex ligation-dependent probe amplification).
The greatest challenge to clinical genomics is the reliable interpretation of the multiple and novel variants found through genome sequencing. Pathogenicity of genetic variants can be examined with bioinformatics prediction approaches, protein stability studies, transcriptional activity studies and allele- and/or gene-specific animal models.
As broader genomic information becomes available to providers and patients, partnerships will develop to convey patient-centred data, including incidental findings. The regulatory environment must adapt to the coming volume of genomic information to maximize benefit to patients and health-care systems and to match the expectations of the patient population with regard to these technologies.
The authors review current technologies for clinical genetic testing. Moves are being made towards whole-genome and whole-exome sequencing in the clinic, although other technologies will continue to be of value.
Genomic technologies are reaching the point of being able to detect genetic variation in patients at high accuracy and reduced cost, offering the promise of fundamentally altering medicine. Still, although scientists and policy advisers grapple with how to interpret and how to handle the onslaught and ambiguity of genome-wide data, established and well-validated molecular technologies continue to have an important role, especially in regions of the world that have more limited access to next-generation sequencing capabilities. Here we review the range of methods currently available in a clinical setting as well as emerging approaches in clinical molecular diagnostics. In parallel, we outline implementation challenges that will be necessary to address to ensure the future of genetic medicine.
Journal Article
Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics
by
Geyer, Chelsie
,
Weinstock, George M.
,
Goldberg, Brittany
in
Antibiotics
,
Antimicrobial agents
,
Bacteria
2015
Next-generation DNA sequencing (NGS) has progressed enormously over the past decade, transforming genomic analysis and opening up many new opportunities for applications in clinical microbiology laboratories. The impact of NGS on microbiology has been revolutionary, with new microbial genomic sequences being generated daily, leading to the development of large databases of genomes and gene sequences. The ability to analyze microbial communities without culturing organisms has created the ever-growing field of metagenomics and microbiome analysis and has generated significant new insights into the relation between host and microbe. The medical literature contains many examples of how this new technology can be used for infectious disease diagnostics and pathogen analysis. The implementation of NGS in medical practice has been a slow process due to various challenges such as clinical trials, lack of applicable regulatory guidelines, and the adaptation of the technology to the clinical environment. In April 2015, the American Academy of Microbiology (AAM) convened a colloquium to begin to define these issues, and in this document, we present some of the concepts that were generated from these discussions.
Journal Article
Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing
by
Ankala, Arunkanth
,
Hegde, Madhuri R.
,
Xue, Yuan
in
631/208/1516
,
631/208/514/2254
,
692/700/139/1512
2015
Next-generation sequencing is changing the paradigm of clinical genetic testing. Today there are numerous molecular tests available, including single-gene tests, gene panels, and exome sequencing or genome sequencing. As a result, ordering physicians face the conundrum of selecting the best diagnostic tool for their patients with genetic conditions. Single-gene testing is often most appropriate for conditions with distinctive clinical features and minimal locus heterogeneity. Next-generation sequencing–based gene panel testing, which can be complemented with array comparative genomic hybridization and other ancillary methods, provides a comprehensive and feasible approach for heterogeneous disorders. Exome sequencing and genome sequencing have the advantage of being unbiased regarding what set of genes is analyzed, enabling parallel interrogation of most of the genes in the human genome. However, current limitations of next-generation sequencing technology and our variant interpretation capabilities caution us against offering exome sequencing or genome sequencing as either stand-alone or first-choice diagnostic approaches. A growing interest in personalized medicine calls for the application of genome sequencing in clinical diagnostics, but major challenges must be addressed before its full potential can be realized. Here, we propose a testing algorithm to help clinicians opt for the most appropriate molecular diagnostic tool for each scenario.
Genet Med
17
6, 444–451.
Journal Article
ESGO/ESTRO/ESP Guidelines for the management of patients with endometrial carcinoma
by
Marnitz Simone
,
Chargari Cyrus
,
Ledermann, Jonathan A
in
Cancer
,
Carcinoma
,
Endometrial cancer
2021
A European consensus conference on endometrial carcinoma was held in 2014 to produce multidisciplinary evidence-based guidelines on selected questions. Given the large body of literature on the management of endometrial carcinoma published since 2014, the European Society of Gynaecological Oncology (ESGO), the European SocieTy for Radiotherapy & Oncology (ESTRO) and the European Society of Pathology (ESP) jointly decided to update these evidence-based guidelines and to cover new topics in order to improve the quality of care for women with endometrial carcinoma across Europe and worldwide. ESGO/ESTRO/ESP nominated an international multidisciplinary development group consisting of practicing clinicians and researchers who have demonstrated leadership and expertise in the care and research of endometrial carcinoma (27 experts across Europe). To ensure that the guidelines are evidence-based, the literature published since 2014, identified from a systematic search was reviewed and critically appraised. In the absence of any clear scientific evidence, judgment was based on the professional experience and consensus of the development group. The guidelines are thus based on the best available evidence and expert agreement. Prior to publication, the guidelines were reviewed by 191 independent international practitioners in cancer care delivery and patient representatives. The guidelines comprehensively cover endometrial carcinoma staging, definition of prognostic risk groups integrating molecular markers, pre- and intra-operative work-up, fertility preservation, management for early, advanced, metastatic, and recurrent disease and palliative treatment. Principles of radiotherapy and pathological evaluation are also defined.
Journal Article