Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
102,148 result(s) for "Molecules."
Sort by:
Molecules : the elements and the architecture of everything
\"Everything physical is made up of the elements and the infinite variety of molecules they form when they combine with each other. In [this book], Gray takes the next step in the grand story that began with the periodic table in his best-selling book The Elements ... Here, he explores ... the most interesting, essential, useful, and beautiful of the millions of chemical structures that make up every material in the world\"--Amazon.com.
Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Every molecule tells a story
\"Preface Everything that exists is made of atoms, and most of those substances contain groups of two or more of these bonded together to form molecules. Chemistry is the science of molecules. From cooking to medicine, from engineering to art, it is everywhere\"-- Provided by publisher.
Management of Dermatologic Events Associated With the Nectin-4-directed Antibody-Drug Conjugate Enfortumab Vedotin
Abstract Enfortumab vedotin is a first-in-class Nectin-4-directed antibody-drug conjugate approved by the US Food and Drug Administration for the treatment of patients with locally advanced or metastatic urothelial cancer (la/mUC) previously treated with a platinum-based chemotherapy and a programmed death receptor-1/programmed death-ligand 1 (PD-1/L1) inhibitor, or patients with la/mUC who are ineligible for cisplatin-based chemotherapy and have previously received one or more prior lines of therapy. Enfortumab vedotin is the only drug to have demonstrated survival benefit versus chemotherapy in a randomized controlled trial in patients with la/mUC previously treated with platinum-based chemotherapy and a PD-1/L1 inhibitor. The development of dermatologic events following the administration of enfortumab vedotin is anticipated given the expression of Nectin-4 in epidermal keratinocytes and skin appendages (eg, sweat glands and hair follicles). There is the potential for rare but severe and possibly fatal cutaneous adverse reactions, including Stevens-Johnson syndrome and toxic epidermal necrosis, as described in the boxed warning of the US prescribing information for enfortumab vedotin. This manuscript describes the presumed pathophysiology and manifestations of dermatologic reactions related to enfortumab vedotin, and presents recommendations for prevention and treatment, to provide oncologists and other healthcare providers with an awareness of these potential adverse events to best anticipate and manage them. Enfortumab vedotin is a Nectin-4-directed antibody-drug conjugate approved by the US FDA for the treatment of patients with locally advanced or metastatic urothelial cancer. This article describes dermatologic reactions related to enfortumab vedotin and presents prevention and treatment recommendations.
Bright photoactivatable fluorophores for single-molecule imaging
Photoactivatable derivatives of the bright and photostable Janelia Fluor dyes enable improved multicolor single-particle tracking and facile localization microscopy in cells. Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.
Molecules
\"Molecules may be minuscule, but life wouldn't exist without them! This approachable look at an important chemistry topic takes young scientists on a tour of the world at the atomic level. They'll learn how atoms combine to form molecules and about some familiar and vital molecules, such as carbon dioxide. Thought-provoking fact boxes offer even more interesting information, while useful diagrams help learners visualize the amazing processes of nature\"-- Provided by publisher.
Structural basis of NINJ1-mediated plasma membrane rupture in cell death
Eukaryotic cells can undergo different forms of programmed cell death, many of which culminate in plasma membrane rupture as the defining terminal event 1 – 7 . Plasma membrane rupture was long thought to be driven by osmotic pressure, but it has recently been shown to be in many cases an active process, mediated by the protein ninjurin-1 8 (NINJ1). Here we resolve the structure of NINJ1 and the mechanism by which it ruptures membranes. Super-resolution microscopy reveals that NINJ1 clusters into structurally diverse assemblies in the membranes of dying cells, in particular large, filamentous assemblies with branched morphology. A cryo-electron microscopy structure of NINJ1 filaments shows a tightly packed fence-like array of transmembrane α-helices. Filament directionality and stability is defined by two amphipathic α-helices that interlink adjacent filament subunits. The NINJ1 filament features a hydrophilic side and a hydrophobic side, and molecular dynamics simulations show that it can stably cap membrane edges. The function of the resulting supramolecular arrangement was validated by site-directed mutagenesis. Our data thus suggest that, during lytic cell death, the extracellular α-helices of NINJ1 insert into the plasma membrane to polymerize NINJ1 monomers into amphipathic filaments that rupture the plasma membrane. The membrane protein NINJ1 is therefore an interactive component of the eukaryotic cell membrane that functions as an in-built breaking point in response to activation of cell death. Structural, biochemical and mutagenesis studies indicate that, in dying cells, the membrane protein NINJ1 assembles into filaments, disrupting the cell membrane.