Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
187 result(s) for "Molnupiravir"
Sort by:
Degree-Based and Neighborhood Degree Sum-Based Entropy Measures of Molnupiravir
An entirely novel virus that causes severe acute respiratory syndrome began to spread around the world at the end of 2019. Since there are no curative treatments to treat the viral infection, efforts are being made globally to stop the coronavirus from spreading. The coronavirus strain is also known as 2019-nCoV and officially identified as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Several distinctive characteristics of graphs have been used to differentiate the construction of entropy-based measurements from the structure of chemical graphs. Graph entropies have emerged as the information-theoretic quantities for quantifying the fundamental information of chemical graphs. The prospective applicability of the graph entropy measure in discrete mathematics, biology and chemistry has drawn attention from the scientific community. In this work, we study the structural properties of one of the known antiviral drugs, Molnupiravir, and introduce the concept of entropy measure for this drug. We evaluate the degree-based and neighborhood degree sum-based entropy by considering the values of topological indices of the chemical compound. Furthermore, we present the graphical representations of these entropy measures. A comparative analysis of degree-based and neighborhood degree sum-based topological indices, along with their associated entropy measures, is presented for Molnupiravir through graphical illustrations using numerical data.
Discovery, Development, and Patent Trends on Molnupiravir: A Prospective Oral Treatment for COVID-19
The COVID-19 pandemic needs no introduction at present. Only a few treatments are available for this disease, including remdesivir and favipiravir. Accordingly, the pharmaceutical industry is striving to develop new treatments for COVID-19. Molnupiravir, an orally active RdRp inhibitor, is in a phase 3 clinical trial against COVID-19. The objective of this review article is to enlighten the researchers working on COVID-19 about the discovery, recent developments, and patents related to molnupiravir. Molnupiravir was originally developed for the treatment of influenza at Emory University, USA. However, this drug has also demonstrated activity against a variety of viruses, including SARS-CoV-2. Now it is being jointly developed by Emory University, Ridgeback Biotherapeutics, and Merck to treat COVID-19. The published clinical data indicate a good safety profile, tolerability, and oral bioavailability of molnupiravir in humans. The patient-compliant oral dosage form of molnupiravir may hit the market in the first or second quarter of 2022. The patent data of molnupiravir revealed its granted compound patent and process-related patent applications. We also anticipate patent filing related to oral dosage forms, inhalers, and a combination of molnupiravir with marketed drugs like remdesivir, favipiravir, and baricitinib. The current pandemic demands a patient compliant, safe, tolerable, and orally effective COVID-19 treatment. The authors believe that molnupiravir meets these requirements and is a breakthrough COVID-19 treatment.
Molnupiravir and Its Antiviral Activity Against COVID-19
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (β-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.
Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses
Coronaviruses (CoVs) are positive-sense RNA enveloped viruses, members of the family Coronaviridae, that cause infections in a broad range of mammals including humans. Several CoV species lead to mild upper respiratory infections typically associated with common colds. However, three human CoV (HCoV) species: Severe Acute Respiratory Syndrome (SARS)-CoV-1, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV-2, are responsible for severe respiratory diseases at the origin of two recent epidemics (SARS and MERS), and of the current COronaVIrus Disease 19 (COVID-19), respectively. The easily transmissible SARS-CoV-2, emerging at the end of 2019 in China, spread rapidly worldwide, leading the World Health Organization (WHO) to declare COVID-19 a pandemic. While the world waits for mass vaccination, there is an urgent need for effective drugs as short-term weapons to combat the SARS-CoV-2 infection. In this context, the drug repurposing approach is a strategy able to guarantee positive results rapidly. In this regard, it is well known that several nucleoside-mimicking analogs and nucleoside precursors may inhibit the growth of viruses providing effective therapies for several viral diseases, including HCoV infections. Therefore, this review will focus on synthetic nucleosides and nucleoside precursors active against different HCoV species, paying great attention to SARS-CoV-2. This work covers progress made in anti-CoV therapy with nucleoside derivatives and provides insight into their main mechanisms of action.
Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen
Following the spread of the COVID-19 pandemic crisis, a race was initiated to find a successful regimen for postinfections. Among those trials, a recent study declared the efficacy of an antiviral combination of favipiravir (FAV) and molnupiravir (MLP). The combined regimen helped in a successful 60% eradication of the SARS-CoV-2 virus from the lungs of studied hamster models. Moreover, it prevented viral transmission to cohosted sentinels. Because both medications are orally bioavailable, the coformulation of FAV and MLP can be predicted. The developed study is aimed at developing new green and simple methods for the simultaneous determination of FAV and MLP and then at their application in the study of their dissolution behavior if coformulated together. A green micellar HPLC method was validated using an RP-C18 core-shell column (5 μm, 150 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.1 M SDS, 0.01 M Brij-35, and 0.02 M monobasic potassium phosphate mixture and adjusted to pH 3.1 at 1.0 mL min−1 flow rate. The analytes were detected at 230 nm. The run time was less than five minutes under the optimized chromatographic conditions. Four other multivariate chemometric model methods were developed and validated, namely, classical least square (CLS), principal component regression (PCR), partial least squares (PLS-1), and genetic algorithm–partial least squares (GA–PLS-1). The developed models succeeded in resolving the great similarity and overlapping in the FAV and MLP UV spectra unlike the traditional univariate methods. All methods were organic solvent-free, did not require extraction or derivatization steps, and were applied for the construction of the simultaneous dissolution profile for FAV tablets and MLP capsules. The methods revealed that the amount of the simultaneously released cited drugs increases up until reaching a plateau after 15 and 20 min for FAV and MLP, respectively. The greenness was assessed on GAPI and found to be in harmony with green analytical chemistry concepts.
Antiviral Efficacy and Safety of Molnupiravir Against Omicron Variant Infection: A Randomized Controlled Clinical Trial
Background: The rapid worldwide spread of the Omicron variant of SARS-CoV-2 has unleashed a new wave of COVID-19 outbreaks. The efficacy of molnupiravir, an approved drug, is still unknown in patients infected with the Omicron variant. Objective: Evaluated the antiviral efficacy and safety of molnupiravir in patients infected with SARS-CoV-2 Omicron variant, with symptom duration within 5 days. Methods: We conducted a randomized, controlled trial involving patients with mild or moderate COVID-19. Patients were randomized to orally receive molnupiravir (800 mg) plus basic treatment or only basic treatment for 5 days (BID). The antiviral efficacy of the drug was evaluated using reverse transcriptase polymerase chain reaction. Results: Results showed that the time of viral RNA clearance (primary endpoint) was significantly decreased in the molnupiravir group (median, 9 days) compared to the control group (median, 10 days) (Log-Rank p = 0.0092). Of patients receiving molnupiravir, 18.42% achieved viral RNA clearance on day 5 of treatment, compared to the control group (0%) ( p = 0.0092). On day 7, 40.79%, and 6.45% of patients in the molnupiravir and control groups, respectively, achieved viral RNA clearance ( p = 0.0004). In addition, molnupiravir has a good safety profile, and no serious adverse events were reported. Conclusion: Molnupiravir significantly accelerated the SARS-CoV-2 Omicron RNA clearance in patients with COVID-19. Clinical Trial Registration: [ chictr.org.cn ], identifier [ChiCTR2200056817].
The Clinical Efficacy and Safety of Anti-Viral Agents for Non-Hospitalized Patients with COVID-19: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials
This network meta-analysis compared the clinical efficacy and safety of anti-viral agents for the prevention of disease progression among non-hospitalized patients with COVID-19. PubMed, Embase, Web of Science, Cochrane Library, ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform were searched from their inception to 28 May 2022. Only randomized controlled trials (RCTs) that investigated the clinical efficacy of anti-viral agents for non-hospitalized patients with COVID-19 were included. Three RCTs involving 4241 patients were included. Overall, anti-viral agents were associated with a significantly lower risk of COVID-19 related hospitalization or death compared with the placebo (OR, 0.23; 95% CI: 0.06–0.96; p = 0.04). Compared with the placebo, patients receiving nirmatrelvir plus ritonavir had the lowest risk of hospitalization or death (OR, 0.12; 95% CI: 0.06–0.24), followed by remdesivir (OR, 0.13; 95% CI: 0.03–0.57) and then molnupiravir (OR, 0.67; 95% CI: 0.46–0.99). The rank probability for each treatment calculated using the P-score revealed that nirmatrelvir plus ritonavir was the best anti-viral treatment, followed by remdesivir and then molnupiravir. Finally, anti-viral agents were not associated with an increased risk of adverse events compared with the placebo. For non-hospitalized patients with COVID-19 who are at risk of disease progression, the currently recommended three anti-viral agents, nirmatrelvir plus ritonavir, molnupiravir and remdesivir, should continue to be recommended for the prevention of disease progression. Among them, oral nirmatrelvir plus ritonavir and intravenous remdesivir seem to be the better choice, followed by molnupiravir, as determined by this network meta-analysis. Additionally, these three anti-viral agents were shown to be as tolerable as the placebo in this clinical setting.