Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Monkeypox virus - pathogenicity"
Sort by:
Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution
Monkeypox is a zoonotic disease caused by monkeypox virus (MPXV), which is a member of orthopoxvirus genus. The reemergence of MPXV in 2017 (at Bayelsa state) after 39 years of no reported case in Nigeria, and the export of travelers’ monkeypox (MPX) from Nigeria to other parts of the world, in 2018 and 2019, respectively, have raised concern that MPXV may have emerged to occupy the ecological and immunological niche vacated by smallpox virus. This review X-rays the current state of knowledge pertaining the infection biology, epidemiology, and evolution of MPXV in Nigeria and worldwide, especially with regard to the human, cellular, and viral factors that modulate the virus transmission dynamics, infection, and its maintenance in nature. This paper also elucidates the role of recombination, gene loss and gene gain in MPXV evolution, chronicles the role of signaling in MPXV infection, and reviews the current therapeutic options available for the treatment and prevention of MPX. Additionally, genome-wide phylogenetic analysis was undertaken, and we show that MPXV isolates from recent 2017 outbreak in Nigeria were monophyletic with the isolate exported to Israel from Nigeria but do not share the most recent common ancestor with isolates obtained from earlier outbreaks, in 1971 and 1978, respectively. Finally, the review highlighted gaps in knowledge particularly the non-identification of a definitive reservoir host animal for MPXV and proposed future research endeavors to address the unresolved questions.
Genomic history of human monkey pox infections in the Central African Republic between 2001 and 2018
Monkeypox is an emerging infectious disease, which has a clinical presentation similar to smallpox. In the two past decades, Central Africa has seen an increase in the frequency of cases, with many monkeypox virus (MPXV) isolates detected in the Democratic Republic of Congo (DRC) and the Central African Republic (CAR). To date, no complete MPXV viral genome has been published from the human cases identified in the CAR. The objective of this study was to sequence the full genome of 10 MPXV isolates collected during the CAR epidemics between 2001 and 2018 in order to determine their phylogenetic relationships among MPXV lineages previously described in Central Africa and West Africa. Our phylogenetic results indicate that the 10 CAR isolates belong to three lineages closely related to those found in DRC. The phylogenetic pattern shows that all of them emerged in the rainforest block of the Congo Basin. Since most human index cases in CAR occurred at the northern edge of western and eastern rainforests, transmissions from wild animals living in the rainforest is the most probable hypothesis. In addition, molecular dating estimates suggest that periods of intense political instability resulting in population movements within the country often associated also with increased poverty may have led to more frequent contact with host wild animals. The CAR socio-economic situation, armed conflicts and ecological disturbances will likely incite populations to interact more and more with wild animals and thus increase the risk of zoonotic spillover.
Assessing Monkeypox Virus Prevalence in Small Mammals at the Human–Animal Interface in the Democratic Republic of the Congo
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
Analysis of Monkeypox Virus Exposures and Lesions by Anatomic Site
We used cross-sectional data from 226 patients with monkeypox virus to investigate the association between anatomic exposure site and lesion development. Penile, anorectal, and oral exposures predicted lesion presence at correlating anatomic sites. Exposure site also predicted the first lesion site of the penis and anus.
Status of human monkeypox: clinical disease, epidemiology and research
Monkeypox, a vesiculo-pustular rash illness, was initially discovered to cause human infection in 1970 through the World Health Organization (WHO)-sponsored efforts of the Commission to Certify Smallpox Eradication in Western Africa and the Congo Basin. The virus had been discovered to cause a nonhuman primate rash illness in 1958, and was thus named monkeypox. The causative agents of monkeypox and smallpox diseases both are species of Orthopoxvirus. Orthopoxvirus monkeypox, when it infects humans as an epizootic, produces a similar clinical picture to that of ordinary human smallpox. Since 1970, extensive epidemiology, virology, ecology and public health research has enabled better characterization of monkeypox virus and the associated human disease. This work reviews the progress in this body of research, and reviews studies of this “newly” emerging zoonotic disease.
Exploring monkeypox virus proteins and rapid detection techniques
Monkeypox (mpox) is an infectious disease caused by the mpox virus and can potentially lead to fatal outcomes. It resembles infections caused by viruses from other families, challenging identification. The pathogenesis, transmission, and clinical manifestations of mpox and other Orthopoxvirus species are similar due to their closely related genetic material. This review provides a comprehensive discussion of the roles of various proteins, including extracellular enveloped virus (EEV), intracellular mature virus (IMV), and profilin-like proteins of mpox. It also highlights recent diagnostic techniques based on these proteins to detect this infection rapidly.
Dynamic analysis and optimal control of a hybrid fractional monkeypox disease model in terms of external factors
The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data. The main challenge is accurately estimating the virus's rate of transmission and assessing the effectiveness of vaccination campaigns. By taking into account the modified Atangana-Baleanu-Caputo (mABC) fractional difference operator, we develop an analytical framework for an outbreak caused by MPXV and broaden it to accommodate the fractional scenario. The non-negativity and boundedness are guaranteed by the computation of the fractional-order MPXV system. At the disease-free equilibrium (DFE) [Formula: see text], we perform a local asymptotical stability analysis (LAS) and display the outcome for [Formula: see text]. When [Formula: see text] and [Formula: see text], the single endemic equilibrium point (EEP) of infectious rodents is globally asymptotically stable (GAS). Lyapunov's approach and LaSalle's invariant criterion demonstrate that the GAS in terms of EEP for infectious persons occurs when [Formula: see text] and [Formula: see text]. Through the application of nonlinear least squares, we determine the parameter values applying actual cases collected from Canada. To further bolster the operator's effectiveness, a number of tests of this novel kind of operator were conducted. We remark that in various time scale domains [Formula: see text], the investigated discrete formulations will be [Formula: see text]-nonincreasing or [Formula: see text]-nondecreasing by examining ρ-monotonicity formulations and the basic properties of the suggested operator. Algorithms are constructed in the discrete generalized Mittag-Leffler (GML) kernel for mathematical simulations, emphasizing the effects of the infection resulting from multiple factors. The dynamical technique used to build the MPXV framework was significantly impacted by fractional-order. In order to lessen the infections, severity, five time-dependent control factors are also implemented. The optimality criteria are produced by applying Pontryagin's maximal argument to prove the validity of the most effective control. Various combos of control factors are offered to reduce the incidence of MPXV. The results of the current research provide governmental officials and healthcare professionals with practical steps to take in order to establish efficient and ideal preventive approaches to reduce the MPXV outbreaks.
Evolving Threats: Adaptive Mechanisms of Monkeypox Virus (MPXV) in the 2022 Global Outbreak and Their Implications for Vaccine Strategies
Monkeypox virus (MPXV) experienced an unprecedented global outbreak in 2022, characterized by a significant departure from historical patterns: a rapid spread of the epidemic to more than 110 non-traditional endemic countries, with more than 90,000 confirmed cases; a fundamental shift in the mode of transmission, with human-to-human transmission (especially among men who have sex with men (MSM)) becoming the dominant route (95.2%); and genetic sequencing revealing a key adaptive mutation in a novel evolutionary branch (Clade IIb) that triggered the outbreak. These features highlight the significant evolution of MPXV in terms of host adaptation, transmission efficiency, and immune escape ability. The aim of this paper is to provide insights into the viral adaptive evolutionary mechanisms driving this global outbreak, with a particular focus on the role of immune escape (e.g., novel mechanisms of M2 proteins targeting the T cell co-stimulatory pathway) in enhancing viral transmission and pathogenicity. At the same time, we systematically evaluate the cross-protective efficacy and limitations of existing vaccines (ACAM2000, JYNNEOS, and LC16), as well as recent advances in novel vaccine platforms, especially mRNA vaccines, in inducing superior immune responses. The study further reveals the constraints to outbreak control posed by grossly unequal global vaccine distribution (e.g., less than 10% coverage in high-burden regions such as Africa) and explores the urgency of optimizing stratified vaccination strategies and facilitating technology transfer to promote equitable access. The core of this paper is to elucidate the dynamic game between viral evolution and prevention and control strategies (especially vaccines). The key to addressing the long-term epidemiological challenges of MPXV in the future lies in continuously strengthening global surveillance of viral evolution (early warning of highly transmissible/pathogenic variants), accelerating the development of next-generation vaccines based on new mechanisms and platforms (e.g., multivalent mRNAs), and resolving the vaccine accessibility gap through global collaboration to build an integrated defense system of “Surveillance, Research and Development, and Equitable Vaccination,” through global collaboration to address the vaccine accessibility gap.
How deadly is monkeypox? What scientists know
Symptoms of severe disease differ from those seen during past outbreaks, causing researchers to re-evaluate their assumptions. Symptoms of severe disease differ from those seen during past outbreaks, causing researchers to re-evaluate their assumptions.
Mpox animal models: a comprehensive evaluation of susceptible species for pathogenesis studies and drug discovery
Mpox, formerly known as monkeypox, has shifted from a regional concern to a global health priority. Progress toward targeted antivirals and vaccines, however, still hinges on a complex array of animal models developed over the last sixty years. This review distills all literature regarding Mpox animal models - from rodent to non-human primate species - into a clear, comparative narrative. We outline how host species, viral clade, and inoculation route shape clinical course and immune responses, and we identify which models best address questions of pathogenesis, transmission, and medical countermeasure efficacy. The resulting roadmap is designed to help researchers, funders, and regulators select the most informative tools and streamline mpox drug discovery pipelines.