Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,521 result(s) for "Morpholines - pharmacology"
Sort by:
Phase 2 Trial of Iberdomide in Systemic Lupus Erythematosus
In a phase 2 trial of iberdomide in patients with moderate-to-severe SLE, a composite response (on the Systemic Lupus Erythematosus Responder Index–4) occurred in 54% of those who received iberdomide (0.45 mg), as compared with 35% in the placebo group, but this between-group difference was not significant at lower doses. Urinary tract and respiratory tract infections and neutropenia occurred.
Rivaroxaban
Background and Objective: Rivaroxaban is an oral, direct Factor Xa inhibitor, which is at an advanced stage of clinical development for prevention and treatment of thromboembolic disorders. Two phase II studies, ODIXa-DVT and EINSTEIN DVT, assessed the efficacy and safety of oral rivaroxaban (once daily or twice daily) for treatment of acute deep-vein thrombosis (DVT). Population pharmacokinetic and pharmacodynamic analyses of rivaroxaban in patients in these two phase II studies were conducted to characterize the pharmacokinetics/pharmacodynamics of rivaroxaban and the relationship between important patient covariates and model parameters. Exposure simulations in patients with atrial fibrillation (AF) were also performed in order to predict the exposure of rivaroxaban, using modified demographic data reflecting the characteristics of a typical AF population. Methods: A population pharmacokinetic model was developed using plasma samples from these patients. Various simulations were conducted to explore the pharmacokinetics of rivaroxaban in patients with DVT and to predict exposure in those with AF. Correlations between plasma rivaroxaban concentrations and the prothrombin time, Factor Xa activity, HepTest® and activated partial thromboplastin time were also described. Results: The pharmacokinetics of rivaroxaban in patients with DVT were found to be consistent and predictable across all doses studied. The area under the plasma concentration-time curve (AUC) increased dose dependently. The same total daily doses given once daily achieved higher maximum plasma concentration (C max ) values (∼20%) and lower trough (minimum) plasma concentration (C trough ) values (∼60%) than when given twice daily; however, the 5th–95th percentile ranges for these parameters overlapped. Rivaroxaban clearance was moderately influenced by age and renal function, and the volume of distribution was influenced by age, body weight and sex; the effects were within the observed interindividual variability. Simulations in virtual patient populations with AF showed that a rivaroxaban dose of 15 mg once daily in patients with creatinine clearance of 30–49 mL/min would achieve AUC and C max values similar to those observed with 20 mg once daily in patients with normal renal function. The prothrombin time correlated almost linearly with plasma rivaroxaban concentrations (≤500 µg/L). Conclusion: Population analyses of phase II clinical data indicated that the pharmacokinetics and pharmacodynamics of all rivaroxaban doses were predictable and were affected by expected demographic factors in patients with acute DVT.
Landiolol for heart rate control in patients with septic shock and persistent tachycardia. A multicenter randomized clinical trial (Landi-SEP)
PurposeExcessive tachycardia in resuscitated septic shock patients can impair hemodynamics and worsen patient outcome. We investigated whether heart rate (HR) control can be achieved without increased vasopressor requirements using the titratable highly selective, ultra-short-acting β1-blocker landiolol.MethodsThis randomized, open-label, controlled trial was conducted at 20 sites in 7 European countries from 2018 to 2022 and investigated the efficacy and safety of landiolol in adult patients with septic shock and persistent tachycardia. Patients were randomly assigned to receive either landiolol along with standard treatment (n = 99) or standard treatment alone (n = 101). The combined primary endpoint was HR response (i.e., HR within the range of 80−94 beats per minute) and its maintenance without increasing vasopressor requirements during the first 24 h after treatment start. Key secondary endpoints were 28-day mortality and adverse events.ResultsOut of 196 included septic shock patients, 98 received standard treatment combined with landiolol and 98 standard treatment alone. A significantly larger proportion of patients met the combined primary endpoint in the landiolol group than in the control group (39.8% [39/98] vs. 23.5% [23/98]), with a between-group difference of 16.5% (95% confidence interval [CI]: 3.4–28.8%; p = 0.013). There were no statistically significant differences between study groups in tested secondary outcomes and adverse events.ConclusionThe ultra-short-acting beta-blocker landiolol was effective in reducing and maintaining HR without increasing vasopressor requirements after 24 h in patients with septic shock and persistent tachycardia. There were no differences in adverse events and clinical outcomes such as 28-day mortality vs. standard of care. The results of this study, in the context of previous trials, do not support a treatment strategy of stringent HR reduction (< 95 bpm) in an unselected septic shock population with persistent tachycardia. Further investigations are needed to identify septic shock patient phenotypes that benefit clinically from HR control.
Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct Factor Xa inhibitor—after multiple dosing in healthy male subjects
There is a clinical need for safe new oral anticoagulants. The safety, tolerability, pharmacodynamics, and pharmacokinetics of BAY 59-7939--a novel, oral, direct Factor Xa (FXa) inhibitor--were investigated in this single-center, placebo-controlled, single-blind, parallel-group, multiple-dose escalation study. Healthy male subjects (aged 20-45 years, body mass index 18.6-31.4 kg/m(2)) received oral BAY 59-7939 (n=8 per dose regimen) or placebo (n=4 per dose regimen) on days 0 and 3-7. Dosing regimens were 5 mg once, twice (bid), or three times daily, and 10 mg, 20 mg, or 30 mg bid. There were no clinically relevant changes in bleeding time or other safety variables across all doses and regimens. There was no dose-related increase in the frequency or severity of adverse events with BAY 59-7939. Maximum inhibition of FXa activity occurred after approximately 3 h, and inhibition was maintained for at least 12 h for all doses. Prothrombin time, activated partial thromboplastin time, and HepTest were prolonged to a similar extent to inhibition of FXa activity for all doses. Dose-proportional pharmacokinetics (AUC(tau, norm) and C(max, norm)) were observed at steady state (day 7). Maximum plasma concentrations were achieved after 3-4 h. The terminal half-life of BAY 59-7939 was 5.7-9.2 h at steady state. There was no relevant accumulation at any dose. BAY 59-7939 was safe and well tolerated across the wide dose range studied, with predictable, dose-proportional pharmacokinetics and pharmacodynamics and no relevant accumulation beyond steady state. These results support further investigation of BAY 59-7939 in phase II clinical trials.
A Multi-Arm Phase I Study of the PI3K/mTOR Inhibitors PF-04691502 and Gedatolisib (PF-05212384) plus Irinotecan or the MEK Inhibitor PD-0325901 in Advanced Cancer
Background This phase I, four-arm, open-label study (NCT01347866) evaluated the PI3K/mTOR inhibitors PF-04691502 (arms A, B) and gedatolisib (PF-05212384; arms C, D) in combination with the MEK inhibitor PD-0325901 (arm A, D) or irinotecan (arm B, C) in patients with advanced solid tumors. Objectives Primary endpoint was dose-limiting toxicity with each combination. Secondary endpoints included safety, pharmacokinetics and preliminary antitumor activity. Patients and Methods Dose escalation followed a 3 + 3 design in arm C and a zone-based design in arm D. Results The PF-04691502 combination arms were closed prematurely due to low tolerability, and the maximum tolerated doses (MTDs) were not determined for either arm. The MTD for the combination of gedatolisib with irinotecan 180 mg/m 2 was estimated to be 110 mg weekly and for the combination with PD-0325901 was not reached at the highest dose evaluated (gedatolisib 154 mg weekly). Plasma concentrations of gedatolisib were generally similar across dose groups in arm C (with irinotecan) and arm D (with PD-0325901). Frequent dose delays or dose reductions were required for both combinations, potentially preventing sustained therapeutic drug concentrations. Gedatolisib plus irinotecan produced a response rate of ~5% and clinical benefit in 16% of patients with advanced colorectal cancer (progression-free survival, 2.8 months). Preliminary evidence of clinical activity was observed with gedatolisib plus PD-0325901 in patients with ovarian cancer (three partial responses, n  = 5) or endometrial cancer (one partial response, n  = 1) and KRAS mutations. Conclusions Further evaluations of gedatolisib are warranted in patients with advanced solid malignancies.
Population Pharmacokinetics and Pharmacodynamics of Rivaroxaban — an Oral, Direct Factor Xa Inhibitor — in Patients Undergoing Major Orthopaedic Surgery
Background: There is a clinical need for novel oral anticoagulants with predictable pharmacokinetics and pharmacodynamics. Rivaroxaban is an oral direct Factor Xa (FXa) inhibitor in clinical development for the prevention and treatment of thromboembolic disorders. This analysis was performed to characterize the population pharmacokinetics and pharmacodynamics of rivaroxaban in patients participating in two phase II, double-blind, randomized, active-comparator-controlled studies of twice-daily rivaroxaban for the prevention of venous thromboembolism after total hip- or knee-replacement surgery. Methods: Sparse blood samples were taken from all patients participating in the studies (n = 1009). In addition, a subset of patients in the hip study (n = 36) underwent full profiling. Rivaroxaban plasma concentrations, FXa activity and the prothrombin time were determined. Nonlinear mixed-effects modelling was used to model the population pharmacokinetics and pharmacodynamics of rivaroxaban. Results: An oral one-compartment model described the population pharmacokinetics of rivaroxaban well. On the first postoperative day only, categorization of patients as slow or fast absorbers as a tool to address variability in absorption improved the fit of the model. Clearance of rivaroxaban was lower and more variable on the first postoperative day, and so time was factored into the model. Overall, the only major difference between the models for the hip study and the knee study was that clearance was 26% lower in the knee study, resulting in approximately 30% higher exposure. Residual variability in the models was moderate (37% and 34% in the hip and knee studies, respectively). Plasma concentrations of rivaroxaban increased dose dependently. Pharmacokinetic parameters that were estimated using the models agreed closely with results from full-profile patients in the hip study, demonstrating that rivaroxaban pharmacokinetics are predictable. The pharmacokinetics of rivaroxaban were affected by expected covariates: age affected clearance in the hip study only, haematocrit (on the first postoperative day only) and gender affected clearance in the knee study only, and renal function affected clearance in both studies. Bodyweight affected the volume of distribution in both studies. However, the effects of covariates on the pharmacokinetics of rivaroxaban were generally small, and predictions of ‘extreme’ case scenarios suggested that fixed dosing of rivaroxaban was likely to be possible. FXa activity and the prothrombin time were both affected by surgery, probably because of perioperative bleeding and intravenous administration of fluids; therefore, time was included in the pharmacodynamic models. In both studies, FXa activity correlated with rivaroxaban plasma concentrations following a maximum effect model, whereas prothrombin time prolongation correlated following a linear model with intercept. The slope of the prothrombin time prolongation correlation was 3.2 seconds/(100 μg/L) in the hip study and 4.2 seconds/(100 μg/L) in the knee study. Both pharmacodynamic models in both studies demonstrated low residual variability of approximately 10%. Conclusion: This population analysis in patients undergoing major orthopaedic surgery demonstrated that rivaroxaban has predictable, dose-dependent pharmacokinetics that were well described by an oral one-compartment model and affected by expected covariates. Rivaroxaban exposure could be assessed using the prothrombin time, if necessary, but not the international normalized ratio. The findings suggested that fixed dosing of rivaroxaban may be possible in patients undergoing major orthopaedic surgery.
Bolus application of landiolol and esmolol: comparison of the pharmacokinetic and pharmacodynamic profiles in a healthy Caucasian group
Purpose The aim of this prospective study was to compare in non-Asian subjects the pharmacokinetics (PK), pharmacodynamics (PD), safety, and tolerability of two short-acting cardioselective β1-adrenergic antagonists, landiolol and esmolol, after administration of three different bolus dosages. Materials and methods We conducted a single-center, prospective, double-blinded, randomized study in three cross-over periods with 12 healthy subjects (7 women and 5 men, mean age of 24.5 ± 6.9 years) each receiving three doses of landiolol (0.1, 0.2, and 0.3 mg/kg BW) either in a newly developed concentrate i.v. formulation (Rapibloc® 20 mg/2 mL concentrate) or a lyophilized formulation, or three doses of esmolol (0.5, 1, and 1.5 mg/kg BW) in an i.v. formulation (Brevibloc® 100 mg/10 mL). PK and PD parameters, safety, and tolerability were assessed. Findings Results of the two landiolol formulations were reported previously and were similar. For the landiolol concentrate formulation and esmolol, maximum blood concentrations were rapidly reached (mean t max ranged between 1.8 and 3.0 min for landiolol and 1.8 to 2.4 min for esmolol). The parent drugs disappeared very fast from the blood stream, with a t 1/2 of 3.2 ± 1.2 (SD) minutes and 3.7 ± 2.1 (SD) minutes for the low doses of landiolol and esmolol, respectively. Despite comparable injection rates (0.1 or 0.5 mg/kg/15 s for landiolol and esmolol, respectively), the onset of significant heart rate reduction occurred earlier in response to landiolol (1 min) than in response to esmolol (2 min). In addition, significantly lower heart rate values were obtained at every dose level of landiolol, in comparison to esmolol ( p  < 0.05). Both compounds reduced the systolic blood pressure to a comparable degree. Especially at the highest dose, the duration of blood pressure reduction was longer under esmolol compared to landiolol. Seven mild to moderate adverse events occurred after administration of landiolol, and five occurred after administration of esmolol. No serious adverse events were reported in this study. Implications Heart rate reduction induced by a new liquid formulation of landiolol occurred faster, was more pronounced, and lasted longer than the effects of corresponding standard esmolol doses. Both agents reduced systolic blood pressure to a comparable degree, but the blood pressure decrease lasted longer after esmolol infusion. The local tolerance and safety profiles of the two formulations were similar. In summary, compared to esmolol, landiolol shows a more prominent and pronounced bradycardic effect in relation to its blood pressure-lowering effect, an action profile that might be of specific advantage in the perioperative setting. Trial registration NCT01652898 and 2012-002127-14. https://clinicaltrials.gov/ct2/show/NCT01652898?term=landiolol&rank=7
Antidepressant medications reduce subcortical–cortical resting-state functional connectivity in healthy volunteers
Studies have revealed abnormalities in resting-state functional connectivity in those with major depressive disorder specifically in areas such as the dorsal anterior cingulate, thalamus, amygdala, the pallidostriatum and subgenual cingulate. However, the effect of antidepressant medications on human brain function is less clear and the effect of these drugs on resting-state functional connectivity is unknown. Forty volunteers matched for age and gender with no previous psychiatric history received either citalopram (SSRI; selective serotonergic reuptake inhibitor), reboxetine (SNRI; selective noradrenergic reuptake inhibitor) or placebo for 7days in a double-blind design. Using resting-state functional magnetic resonance imaging and seed based connectivity analysis we selected the right nucleus accumbens, the right amygdala, the subgenual cingulate and the dorsal medial prefrontal cortex as seed regions. Mood and subjective experience were also measured before and after drug administration using self-report scales. Despite no differences in mood across the three groups, we found reduced connectivity between the amygdala and the ventral medial prefrontal cortex in the citalopram group and the amygdala and the orbitofrontal cortex for the reboxetine group. We also found reduced striatal–orbitofrontal cortex connectivity in the reboxetine group. These data suggest that antidepressant medications can decrease resting-state functional connectivity independent of mood change and in areas known to mediate reward and emotional processing in the brain. We conclude that hypothesis-driven seed based analysis of resting-state fMRI supports the proposition that antidepressant medications might work by normalising the elevated resting-state functional connectivity seen in depressed patients. ► We examine the effects of 7day treatment with two antidepressants (citalopram and reboxetine) on resting-state functional connectivity in healthy volunteers. ► Both citalopram and reboxetine reduce functional connectivity between the amygdala seed region and the prefrontal cortex. ► Antidepressant action may involve normalisation of elevated resting-state functional connectivity between key elements of resting-state networks.
Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial
Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. We investigated insulin signaling by immunoblotting during wound healing of control and diabetic animals with or without topical insulin. Diabetic patients with ulcers were randomized to receive topical insulin or placebo in a prospective, double-blind and placebo-controlled, randomized clinical trial (NCT 01295177) of wound healing. Expression of IR, IRS-1, IRS-2, SHC, ERK, and AKT are increased in the tissue of healing wounds compared to intact skin, suggesting that the insulin signaling pathway may have an important role in this process. These pathways were attenuated in the wounded skin of diabetic rats, in parallel with an increase in the time of complete wound healing. Upon topical application of insulin cream, the wound healing time of diabetic animals was normalized, followed by a reversal of defective insulin signal transduction. In addition, the treatment also increased expression of other proteins, such as eNOS (also in bone marrow), VEGF, and SDF-1α in wounded skin. In diabetic patients, topical insulin cream markedly improved wound healing, representing an attractive and cost-free method for treating this devastating complication of diabetes. ClinicalTrials.gov NCT01295177.
Assessing the post-treatment therapeutic effect of pinaverium in irritable bowel syndrome: a randomized controlled trial
Irritable bowel syndrome (IBS) is the most common gastrointestinal disorder significantly decreasing patients’ lives of quality and placing huge economic burden on our society. Existing studies indicated that the therapeutic effects maintained for a period of time after the treatments were discontinued. It is clinically important to assess these post-treatment therapeutic effects (PTTE), which prevent IBS from relapsing. To assess the PTTE in pinaverium treatment and obtain high-quality evidence to justify the use of PTTE for long-term IBS management, we performed this controlled, double blind study on patients with IBS who were randomized to pinaverium 50 mg (n = 132) or placebo (n = 132), three times daily, for 4 weeks, and were followed up for 57 weeks after the treatments. The primary endpoints were abdominal pain and stool consistency. The secondary endpoints were pain frequency and stool frequency. The tertiary endpoints were global overall symptom and adverse events. Three days after pinaverium was discontinued, endpoints rebounded only 23.2–42.8% ( P  < 0.015 cf. placebo). The PTTE ( P  < 0.05 cf. placebo) lasted 9–17 weeks, which is similar to other antispasmodics with a 15-week treatment in striking contrast to ≥ 1 year PTTE in cognitive behavior therapy and < 1 week PTTE in serotonin antagonist treatment indicating that PTTE length markedly depends on the medication class used for the treatment and less depends on treatment length. After 17 weeks, the stage could be considered as an IBS natural history [no significant differences between pinaverium and placebo (all endpoints’ P ’s > 0.05)], during which an average of 51.5–56.4% of patients (pool pinaverium and placebo data together) had IBS symptoms. These results provide clinical insights into efficient and cost-effective management of refractory IBS, and lend support to the IBS management that the selection of a therapy should consider both its effectiveness during treatment and its PTTE after the treatment. Trial registration number: NCT02330029 (16/08/2016).