Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,054
result(s) for
"Mosquito Control - methods"
Sort by:
Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations
2020
The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6–96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.Mosquitoes are nearly eradicated in three suburbs of California using accurately sorted sterile male mosquitoes.
Journal Article
Incompatible and sterile insect techniques combined eliminate mosquitoes
2019
The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)—which uses sterilization caused by the maternally inherited endosymbiotic bacteria
Wolbachia
—is a promising alternative, but can be undermined by accidental release of females infected with the same
Wolbachia
strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT–SIT) enables near elimination of field populations of the world’s most invasive mosquito species,
Aedes albopictus
. Millions of factory-reared adult males with an artificial triple-
Wolbachia
infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT–SIT for mosquito vector control.
A field trial succeeded in eliminating populations of the mosquito
Aedes albopictus
through inundative mass release of incompatible
Wolbachia
-infected males, which were also irradiated to sterilize any accidentally-released females, and so prevent population replacement.
Journal Article
Combating mosquito-borne diseases using genetic control technologies
2021
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking
Wolbachia
bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.
Mosquito-borne diseases pose significant global health burdens. In this review, the authors explore Wolbachia and genome engineering approaches to mosquito-borne disease population control.
Journal Article
Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae
by
Ogaugwu, Christian
,
Lee, Yoosook
,
Tushar, Taylor
in
Alleles
,
Animals
,
Animals, Genetically Modified - genetics
2020
A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae. The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro,with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.
Journal Article
Novel control strategies for mosquito-borne diseases
by
Ant, Thomas H.
,
Jones, Robert T.
,
Cameron, Mary M.
in
Animals
,
Communicable Disease Control - instrumentation
,
Culicidae
2021
Mosquito-borne diseases are an increasing global health challenge, threatening over 40% of the world's population. Despite major advances in malaria control since 2000, recent progress has stalled. Additionally, the risk of
Aedes
-borne arboviruses is rapidly growing, with the unprecedented spread of dengue and chikungunya viruses, outbreaks of yellow fever and the 2015 epidemic of Zika virus in Latin America. To counteract this growing problem, diverse and innovative mosquito control technologies are currently under development. Conceptually, these span an impressive spectrum of approaches, from invasive transgene cassettes with the potential to crash mosquito populations or reduce the vectorial capacity of a population, to low-cost alterations in housing design that restrict mosquito entry. This themed issue will present articles providing insight into the breadth of mosquito control research, while demonstrating the requirement for an interdisciplinary approach. The issue will highlight mosquito control technologies at varying stages of development and includes both opinion pieces and research articles with laboratory and field-based data on control strategy development.
This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases'.
Journal Article
Effectiveness of Wolbachia-infected mosquito deployments in reducing the incidence of dengue and other Aedes-borne diseases in Niterói, Brazil: A quasi-experimental study
by
Smithyman, Ruth
,
Montgomery, Jacqui
,
Dufault, Suzanne M.
in
Adults
,
Aedes
,
Aedes - microbiology
2021
The introduction of the bacterium Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Evidence of a reduction in dengue case incidence following field releases of wMel-infected Ae. aegypti has been reported previously from a cluster randomised controlled trial in Indonesia, and quasi-experimental studies in Indonesia and northern Australia.
Following pilot releases in 2015-2016 and a period of intensive community engagement, deployments of adult wMel-infected Ae. aegypti mosquitoes were conducted in Niterói, Brazil during 2017-2019. Deployments were phased across four release zones, with a total area of 83 km2 and a residential population of approximately 373,000. A quasi-experimental design was used to evaluate the effectiveness of wMel deployments in reducing dengue, chikungunya and Zika incidence. An untreated control zone was pre-defined, which was comparable to the intervention area in historical dengue trends. The wMel intervention effect was estimated by controlled interrupted time series analysis of monthly dengue, chikungunya and Zika case notifications to the public health surveillance system before, during and after releases, from release zones and the control zone. Three years after commencement of releases, wMel introgression into local Ae. aegypti populations was heterogeneous throughout Niterói, reaching a high prevalence (>80%) in the earliest release zone, and more moderate levels (prevalence 40-70%) elsewhere. Despite this spatial heterogeneity in entomological outcomes, the wMel intervention was associated with a 69% reduction in dengue incidence (95% confidence interval 54%, 79%), a 56% reduction in chikungunya incidence (95%CI 16%, 77%) and a 37% reduction in Zika incidence (95%CI 1%, 60%), in the aggregate release area compared with the pre-defined control area. This significant intervention effect on dengue was replicated across all four release zones, and in three of four zones for chikungunya, though not in individual release zones for Zika.
We demonstrate that wMel Wolbachia can be successfully introgressed into Ae. aegypti populations in a large and complex urban setting, and that a significant public health benefit from reduced incidence of Aedes-borne disease accrues even where the prevalence of wMel in local mosquito populations is moderate and spatially heterogeneous. These findings are consistent with the results of randomised and non-randomised field trials in Indonesia and northern Australia, and are supportive of the Wolbachia biocontrol method as a multivalent intervention against dengue, chikungunya and Zika.
Journal Article
Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia
by
Boomer, Andrew
,
Maynard, Andrew J.
,
Beebe, Nigel W.
in
Aedes - microbiology
,
Aedes - physiology
,
Aedes aegypti
2021
Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
Journal Article
Alternative strategies for mosquito-borne arbovirus control
by
Pinto, Joao
,
Achee, Nicole L.
,
Vatandoost, Hassan
in
Aedes - drug effects
,
Aedes - virology
,
Aedes aegypti
2019
Mosquito-borne viruses-such as Zika, chikungunya, dengue fever, and yellow fever, among others-are of global importance. Although vaccine development for prevention of mosquito-borne arbovirus infections has been a focus, mitigation strategies continue to rely on vector control. However, vector control has failed to prevent recent epidemics and arrest expanding geographic distribution of key arboviruses, such as dengue. As a consequence, there has been increasing necessity to further optimize current strategies within integrated approaches and advance development of alternative, innovative strategies for the control of mosquito-borne arboviruses.
This review, intended as a general overview, is one of a series being generated by the Worldwide Insecticide resistance Network (WIN). The alternative strategies discussed reflect those that are currently under evaluation for public health value by the World Health Organization (WHO) and represent strategies of focus by globally recognized public health stakeholders as potential insecticide resistance (IR)-mitigating strategies. Conditions where these alternative strategies could offer greatest public health value in consideration of mitigating IR will be dependent on the anticipated mechanism of action. Arguably, the most pressing need for endorsement of the strategies described here will be the epidemiological evidence of a public health impact.
As the burden of mosquito-borne arboviruses, predominately those transmitted by Aedes aegypti and A. albopictus, continues to grow at a global scale, new vector-control tools and integrated strategies will be required to meet public health demands. Decisions regarding implementation of alternative strategies will depend on key ecoepidemiological parameters that each is intended to optimally impact toward driving down arbovirus transmission.
Journal Article
Mosquito feeding behavior and how it influences residual malaria transmission across Africa
by
Mihreteab, Selam
,
Churcher, Thomas S.
,
Fornadel, Christen
in
Africa - epidemiology
,
Animals
,
Anopheles - physiology
2019
The antimalarial efficacy of the most important vector control interventions—long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS)—primarily protect against mosquitoes’ biting people when they are in bed and indoors. Mosquito bites taken outside of these times contribute to residual transmission which determines the maximum effectiveness of current malaria prevention. The likelihood mosquitoes feed outside the time of day when LLINs and IRS can protect people is poorly understood, and the proportion of bites received outdoors may be higher after prolonged vector control. A systematic review of mosquito and human behavior is used to quantify and estimate the public health impact of outdoor biting across Africa. On average 79% of bites by the major malaria vectors occur during the time when people are in bed. This estimate is substantially lower than previous predictions, with results suggesting a nearly 10% lower proportion of bites taken at the time when people are beneath LLINs since the year 2000. Across Africa, this higher outdoor transmission is predicted to result in an estimated 10.6 million additional malaria cases annually if universal LLIN and IRS coverage was achieved. Higher outdoor biting diminishes the cases of malaria averted by vector control. This reduction in LLIN effectiveness appears to be exacerbated in areas where mosquito populations are resistant to insecticides used in bed nets, but no association was found between physiological resistance and outdoor biting. Substantial spatial heterogeneity in mosquito biting behavior between communities could contribute to differences in effectiveness of malaria control across Africa.
Journal Article
A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes
2020
A possible malaria control approach involves the dissemination in mosquitoes of inherited symbiotic microbes to block
Plasmodium
transmission. However, in the
Anopheles gambiae
complex, the primary African vectors of malaria, there are limited reports of inherited symbionts that impair transmission. We show that a vertically transmitted microsporidian symbiont (
Microsporidia MB
) in the
An. gambiae
complex can impair
Plasmodium
transmission.
Microsporidia MB
is present at moderate prevalence in geographically dispersed populations of
An. arabiensis
in Kenya, localized to the mosquito midgut and ovaries, and is not associated with significant reductions in adult host fecundity or survival. Field-collected
Microsporidia MB
infected
An. arabiensis
tested negative for
P. falciparum
gametocytes and, on experimental infection with
P. falciparum
, sporozoites aren’t detected in
Microsporidia MB
infected mosquitoes. As a microbe that impairs
Plasmodium
transmission that is non-virulent and vertically transmitted,
Microsporidia MB
could be investigated as a strategy to limit malaria transmission.
Mircobial symbionts of mosquitoes can affect transmission of human pathogens. Here, Herren
et al
. identify a microsporidian symbiont in
Anopheles gambiae
that impairs transmission without affecting mosquito fecundity or survival.
Journal Article