Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
449 result(s) for "Moths - immunology"
Sort by:
Can Insects Develop Resistance to Insect Pathogenic Fungi?
Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25(th) generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host's own immune responses.
Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity
Quinones are widely distributed in nature and exhibit diverse biological or pharmacological activities; however, their biosynthetic machineries are largely unknown. The bibenzoquinone oosporein was first identified from the ascomycete insect pathogenBeauveria bassiana>50 y ago. The toxin can also be produced by different plant pathogenic and endophytic fungi with an array of biological activities. Here, we report the oosporein biosynthetic machinery in fungi, a polyketide synthase (PKS) pathway including seven genes for quinone biosynthesis. The PKS oosporein synthase 1 (OpS1) produces orsellinic acid that is hydroxylated to benzenetriol by the hydroxylase OpS4. The intermediate is oxidized either nonenzymatically to 5,5′-dideoxy-oosporein or enzymatically to benzenetetrol by the putative dioxygenase OpS7. The latter is further dimerized to oosporein by the catalase OpS5. The transcription factor OpS3 regulates intrapathway gene expression. Insect bioassays revealed that oosporein is required for fungal virulence and acts by evading host immunity to facilitate fungal multiplication in insects. These results contribute to the known mechanisms of quinone biosynthesis and the understanding of small molecules deployed by fungi that interact with their hosts.
Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae
Cell homeostasis requires the correct levels of reactive oxygen species (ROS) to be maintained as these regulate the proliferation and differentiation of cells, and control the immune response and inflammation. High levels of ROS can cause oxidative stress, leading to protein, lipid and DNA damage, or even cell death. Under physiological conditions, the rate of autophagy remains stable; however, it can be accelerated by a number of exogenous stimuli such as oxidative stress, starvation or hypoxia, leading to cell death. The present paper examines the effect of Conidiobolus coronatus infection on the immune response, oxidative stress processes and autophagy in the greater wax moth, Galleria mellonella. Fungal infection was found to result in the disorganization of the cytoskeleton of the larval immune cells and the enhancement of oxidative defense processes. Lipid peroxidation and autophagy were also induced in the hemocytes. Our findings show that G. mellonella is an ideal model for exploring immune mechanisms.
More than a colour change: insect melanism, disease resistance and fecundity
A ‘dark morph’ melanic strain of the greater wax moth, Galleria mellonella, was studied for its atypical, heightened resistance to infection with the entomopathogenic fungus, Beauveria bassiana. We show that these insects exhibit multiple intraspecific immunity and physiological traits that distinguish them from a non-melanic, fungus-susceptible morph. The melanic and non-melanic morphs were geographical variants that had evolved different, independent defence strategies. Melanic morphs exhibit a thickened cuticle, higher basal expression of immunity- and stress-management-related genes, higher numbers of circulating haemocytes, upregulated cuticle phenoloxidase (PO) activity concomitant with conidial invasion, and an enhanced capacity to encapsulate fungal particles. These insects prioritize specific augmentations to those frontline defences that are most likely to encounter invading pathogens or to sustain damage. Other immune responses that target late-stage infection, such as haemolymph lysozyme and PO activities, do not contribute to fungal tolerance. The net effect is increased larval survival times, retarded cuticular fungal penetration and a lower propensity to develop haemolymph infections when challenged naturally (topically) and by injection. In the absence of fungal infection, however, the heavy defence investments made by melanic insects result in a lower biomass, decreased longevity and lower fecundity in comparison with their non-melanic counterparts. Although melanism is clearly correlated with increased fungal resistance, the costly mechanisms enabling this protective trait constitute more than just a colour change.
Synergistic Effect of Beauveria bassiana and Trichoderma asperellum to Induce Maize (Zea mays L.) Defense against the Asian Corn Borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and Larval Immune Response
Ostrinia furnacalis, is the major pest of maize causing significant yield losses. So far, many approaches have been used to increase the virulence of entomopathogenic fungal isolates. The current study is an attempt to estimate synergistic effect of Beauveria bassiana and Trichoderma asperellum in order to explore larval immune response through RNA sequencing and differentially expression analysis. In vivo synergism was examined in seven proportions (B. bassiana: T. asperellum = 1:1, 1:2, 1:3, 1:4, 4:1, 3:1, 2:1) and in the in vitro case, two inoculation methods were applied: seed coating and soil drenching. Results revealed significant decrease in plant damage and high larval mortality in fungal treatments. Fungal isolates mediated the plant defense by increasing proline, superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and protease activities. Seed coating method was proved to be the most effective in case of maize endophytic colonization. In total, 59 immune-related differentially expressed genes DEGs were identified including, cytochrome P450, heat shock protein, ABC transporter, cadherin, peptidoglycan recognition protein (PGRP), cuticlular protein, etc. Further, transcriptomic response was confirmed by qRT-PCR. Our results concluded that, coculture of B. bassiana and T. asperellum has the synergistic potential to suppress the immune response of O. furnacalis and can be used as sustainable approach to induce plant resistance through activation of defense-related enzymes.
Glyphosate inhibits melanization and increases susceptibility to infection in insects
Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin’s broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate—the most widely used herbicide globally—inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G . mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A . gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate’s mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation–reduction balance. Overall, these findings suggest that glyphosate’s environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.
Immune gene regulation in the gut during metamorphosis in a holo- versus a hemimetabolous insect
During metamorphosis, holometabolous insects completely replace the larval gut and must control the microbiota to avoid septicaemia. Rapid induction of bactericidal activity in the insect gut at the onset of pupation has been described in numerous orders of the Holometabola and is best-studied in the Lepidoptera where it is under control of the 20-hydroxyecdysone (20E) moulting pathway. Here, using RNAseq, we compare the expression of immune effector genes in the gut during metamorphosis in a holometabolous ( Galleria mellonella ) and a hemimetabolous insect ( Gryllus bimaculatus ). We find that in G. mellonella , the expression of numerous immune effectors and the transcription factor GmEts are upregulated, with peak expression of three antimicrobial peptides (AMPs) and a lysozyme coinciding with delamination of the larval gut. By contrast, no such upregulation was detectable in the hemimetabolous Gr. bimaculatus . These findings support the idea that the upregulation of immune effectors at the onset of complete metamorphosis is an adaptive response, which controls the microbiota during gut replacement. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Lactobacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida albicans infection
Probiotics have been described as a potential strategy to control opportunistic infections due to their ability to stimulate the immune system. Using the non-vertebrate model host Galleria mellonella, we evaluated whether clinical isolates of Lactobacillus spp. are able to provide protection against Candida albicans infection. Among different strains of Lactobacillus paracasei, Lactobacillus rhamnosus and Lactobacillus fermentum, we verified that L. paracasei 28.4 strain had the greatest ability to prolong the survival of larvae infected with a lethal dose of C. albicans. We found that the injection of 107 cells/larvae of L. paracasei into G. mellonella larvae infected by C. albicans increased the survival of these insects compared to the control group (P = 0.0001). After that, we investigated the immune mechanisms involved in the protection against C. albicans infection, evaluating the number of hemocytes and the gene expression of antifungal peptides. We found that L. paracasei increased the hemocyte quantity (2.38 x 106 cells/mL) in relation to the control group (1.29 x 106 cells/mL), indicating that this strain is capable of raising the number of circulating hemocytes into the G. mellonella hemolymph. Further, we found that L. paracasei 28.4 upregulated genes that encode the antifungal peptides galiomicin and gallerymicin. In relation to the control group, L. paracasei 28.4 increased gene expression of galiomicin by 6.67-fold and 17.29-fold for gallerymicin. Finally, we verified that the prophylactic provision of probiotic led to a significant reduction of the number of fungal cells in G. mellonella hemolymph. In conclusion, L. paracasei 28.4 can modulate the immune system of G. mellonella and protect against candidiasis.
Unveiling the Multifaceted Role of HP6: A Critical Regulator of Humoral Immunity in Antheraea pernyi (Lepidoptera: Saturniidae)
Serine proteases are widely distributed in both invertebrates and vertebrates, playing critical roles in the regulation of innate immunity. In the insect innate immune system, two pivotal pathways—the prophenoloxidase (PPO) activation cascade and Toll pathway-mediated antimicrobial peptide (AMP) synthesis—are both tightly regulated by serine protease cascades. This study focuses on serine protease–hemolymph protease 6 of A. pernyi (Ap-HP6). Following immune stimulation, the expression of Ap-proHP6 was significantly induced, primarily observed in hemocytes and the fat body. After suppressing Ap-proHP6 expression via RNA interference (RNAi) and infecting larvae with different microbes, the expression levels of AMPs showed a downward trend. When endogenous Ap-proHP6 content in hemolymph was reduced using RNAi technology or anti-rAp-proHP6-His6 polyclonal antibodies, PAMPs/microbe-mediated phenoloxidase (PO) activity significantly decreased. These results suggest that Ap-HP6 has a positive regulatory effect on PPO activation and AMP synthesis. Additionally, the in vitro hydrolysis of rAp-proHP6-Tb-His6 yielded rAp-HP6 with serine protease activity, which exhibited optimal reaction conditions for S-2288 at pH 8.0, 50 °C, and 15 min.
Differential cellular immune response of Galleria mellonella to Actinobacillus pleuropneumoniae
In the present work, we have investigate the cellular immune response of Galleria mellonella larvae against three strains of the gram-negative bacterium Actinobacillus pleuropneumoniae : low-virulence (780), high-virulence (1022) and the serotype 8 reference strain (R8). Prohemocytes, plasmatocytes, granulocytes, oenocytoids and spherulocytes were distinguished according to their size and morphology, their molecular markers and dye-staining properties and their role in the immune response. Total hemocyte count, differential hemocyte count, lysosome activity, autophagic response, cell viability and caspase-3 activation were determined in circulating hemocytes of naive and infected larvae. The presence of the autophagosome protein LC3 A/B within the circulating hemocytes of G. mellonella was dependent on and related to the infecting A. pleuropneumoniae strain and duration of infection. Hemocytes treated with the high-virulence strain expressed higher levels of LC3 A/B, whereas treatment with the low-virulence strain induced lower expression levels of this protein in the cells. Moreover, our results showed that apoptosis in circulating hemocytes of G. mellonella larvae after exposure to virulent bacterial strains occurred simultaneously with excessive cell death response induced by stress and subsequent caspase-3 activation.