Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
11
result(s) for
"Moths-Ecology"
Sort by:
Moth
2016
Unlike their gaudy day-flying cousins, moths seem to reside in the shadows as denizens of the night, circling around street lights or caught momentarily in the glare of car headlights on a country lane. There are, however, many more species of day-flying moths than there are of butterflies, and as for colours and patterns, many moths rival or even exceed butterflies in the dazzling range of their markings. The study of moths formed an integral part of early natural history and many thousands of drawings, paintings and physical specimens remain in museum collections. In recent years there has been a renewed surge of interest in moths facilitated by advances in digital photography, the Web-based dissemination of scientific expertise and new cartographic projects that enable direct collaboration between amateur experts and scientifically framed research projects. The rich history of vernacular names speaks to the significant place of moths in early cultures of nature: names such as the Merveille du Jour, the Green-brindled Crescent and the Clifden Nonpareil evoke a sense of wonder that connects disparate fields such as folklore, the history of place and early scientific texts.
Resting orientation enhances prey survival on strongly structured background
2012
Prey can use various camouflage types as defense against predators. One of the most common and important types is background matching, which occurs if an animal matches the background in color, brightness, and pattern. Although background matching has been studied intensively, the effects of the resting orientation of prey on the effectiveness of camouflage through background matching are not well known in natural conditions. Several past experimental studies have been conducted on resting orientation in the lab often using the visual system of humans. Their results revealed that the detection rates of predators hinge on the combination of the resting orientation of artificial moths and their background. Here, we studied whether survival rates of artificial moth-like models depend on their resting orientation in the wild where the visual conditions and detection distances vary. We used a 2 × 2 design of two resting positions of a horizontally and a vertically striped morph on tree bark. Our results show that the survival probability of moths depended mainly on the orientation of stripes relative to the vertical structure of tree bark. Thus, resting orientation relative to background affected survival. After reanalyzing Endler’s (Biol J Linn Soc 22:187–231,
1984
) data on resting habitats of 317 species of North American moths, we found that horizontally striped moths occurred frequently on small herbs and tree bark. We suggest that it would be beneficial for striped moths to orient non-randomly on strongly structured background, like furrows of tree bark. We further suggest that background matching was more important than coincident disruptive coloration in determining the survival rates of our artificial moths.
Journal Article
Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol
by
Sun, Xiaoling
,
Ge, Lingang
,
Chen, Shenglong
in
Allelochemicals
,
Biosynthesis
,
Gene expression
2019
Green leaf volatiles (GLVs) play a vital role in enhancing herbivore-associated defense responses, but the mechanism by which they precisely regulate such responses is not well understood. (Z)-3-Hexenol (z3HOL), an important component of GLVs, effectively activates the defense of tea plants (Camellia sinensis) against a tea geometrid (TG) Ectropis obliqua Prout. To elucidate the molecular mechanisms of defense activation by z3HOL, RNA-Sequencing was employed to investigate the effect of z3HOL on transcriptome responses to TG in tea plants. A total of 318 upregulated genes were identified, and expression of 10 unigenes was validated by quantitative real-time PCR. Among these 318 upregulated genes, 56 were defense-related, including 6 key enzyme genes in jasmonic acid, and ethylene biosynthesis, 24 signal transduction genes, and 12 insect-responsive transcription factors. Most of the defense-related genes are induced by JA, TG, or wounding treatments, suggesting that JA signaling plays a vital role in z3HOL-induced tea defense against TG.
Journal Article
Are tropical butterflies more colorful?
by
Adams, Jonathan M
,
June-Wells, Mark
,
Kang, Changku
in
Animal and plant ecology
,
Animal reproduction
,
Animal, plant and microbial ecology
2014
There is a common and long-standing belief that tropical butterflies are more striking in their coloration than those of cooler climates. It has been suggested that this is due to more intense biotic selection or mate selection in the tropics. We tested whether there were differences in coloration by examining the dorsal surface color properties of male butterflies from three regions of the western hemisphere: the Jatun-Satcha Reserve in lowland Ecuador (tropical), the state of Florida, USA (subtropical) and the state of Maine, USA (cool temperate). We digitally photographed the dorsal wing and body surface of male butterfly specimens from Maine, Florida, and Ecuador. For each photograph, we analyzed the mean and variation for the color-parameters that are thought to be related to colorfulness; namely Hue, saturation and intensity. Overall, the Ecuadorian sample exhibited more varied intensity, saturation, and Hue compared to the other regions. These results suggest a more complex assemblage of colors and patterns regionally and on a butterfly-by-butterfly basis in the tropics. The greater complexity of colors within each butterfly in our Ecuadorian sample suggests that tropical butterflies are indeed more ‘colorful’, at least by some measures. Possible reasons for this include stronger predation pressure selecting for aposematism, greater species diversity selecting for camouflage or warning coloration against potential predators, and easier recognition of potential mates in a species rich environment.
Journal Article
Resource use by the dryad butterfly is scale-dependent
2017
The factors shaping the ways in which animals use resources are a key element of conservation biology, but ecological studies on resource use typically neglect to consider how the study’s spatial scale may have affected the outcomes. We used the dryad butterfly, inhabiting xerothermic grassland and wet meadow, to test for differences in its resource use at two scales–habitat patch and landscape. Based on records of plant species composition from random points within four habitat patches and from points in 53 patches along surveyed transects, we compared the microhabitat preferences of the butterfly on the patch scale, and species occurrence and abundance patterns on the landscape scale. We distinguished four main groups of factors related to vegetation structure which affected the butterfly’s resource use—factors having similar effects on both spatial scales, factors operating primarily on one of the scales considered, factors relevant only on a single spatial scale, and factors operating on both scales but with effects differing between the two habitat types. We suggest that invertebrates may respond on two spatial levels or on only one, and conclude that larger-scale studies can meet the challenges of a sophisticated metapopulation approach and can give insight into the habitat characteristics affecting the persistence of species in landscapes. We stress the value of large-scale studies on species’ habitat preferences when planning conservation strategies, while pointing out that small-scale studies provide useful information about species ecology and behavior, especially if conducted in multiple habitats.
Journal Article
Does immune function influence population fluctuations and level of parasitism in the cyclic geometrid moth?
2007
Populations of the autumnal moth, Epirrita autumnata, exhibit cycles with high amplitudes in northernmost Europe, culminating in devastating outbreak densities at favourable sites. Parasitism by hymenopteran parasitoids has been hypothesised to operate with a delayed density dependence capable of producing the observed dynamics. It has also been hypothesised that insects in crowded conditions invest greatly in their immunity as a counter‐measure to increased risk of parasitism and pathogen infections. Furthermore, inducible plant defences consequent to grazing by herbivorous insects may be linked to the performance of parasitoids and pathogens through increased immunocompetence of the herbivore feeding on the foliage, in which the defence induction has taken place. At ten sampling sites, we quantified larval abundance, outbreak status and percentage larval parasitism during an extended peak phase of a population cycle. These population level covariates, together with an individual pupal mass, were used to explain differences in the immune defence, measured as an encapsulation reaction to artificial antigen. We also conducted a field study for an investigation of the susceptibility of autumnal moth pupae to naturally occurring pupal parasitoids. We did not find obvious differences between the encapsulation rate of autumnal moths originating from the sites with different past and current larval densities and risks for parasitism. The best ranked statistical models included pupal mass and outbreak status as explanatory variables, although both showed only slight effects on the encapsulation rate. The host resistance test revealed positive relationships between the encapsulation rate, body size and percentage parasitism of the exposed pupae, indicating that pupal parasitoids chose, and/or survived better, in large host individuals irrespective of their encapsulation ability. Thus, our results do not provide support for the hypothesis that variation in the immune function drives or modulates population cycles of autumnal moths.
Journal Article
UV‐B‐induced plant stress as a possible cause of ten‐year hare cycles
2006
Predation has been assumed to be a necessary factor in the ten‐year population cycle of the snowshoe hare (Lepus americanus) and Canadian lynx (Lynx canadensis). The UV‐B‐induced plant stress hypothesis, in contrast, predicts that hare performance, especially reproduction, is negatively related to sunspot numbers, because production of UV‐B‐protective phenolics in food plants in periods of low sunspot activity, when the ozone layer is thin, increases the availability of amino acids and reduces the amount of phenolics that protect against herbivores. In accordance with the UV‐B‐induced plant stress hypothesis, and despite the absence of predators that have been assumed to be necessary for hare cycles, mountain hare (Lepus timidus) populations in Norway fluctuate in close synchrony with snowshoe hare populations in Alberta and the Yukon, Canada. When adjusting for the phase of the hare cycle, the natality of snowshoe hare in Alberta 1962–1976 was negatively related to sunspot numbers with a time lag of two years. It is concluded that delayed responses to UV‐B‐induced changes in plant chemistry during the sunspot cycle is a possible cause of ten‐year cycles of hares and other herbivores, for example grouse and forest moths.
Journal Article