Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
5,832 result(s) for "Mountain animals Ecology."
Sort by:
Ice, Fire, and Nutcrackers
Why do quaking aspens grow in prominent clumps rather than randomly scattered across the landscape? Why and how does a rufous hummingbird drop its metabolism to one-hundredth of its normal rate? Why do bull elk grow those enormous antlers? Using his experience as a biologist and ecologist, George Constantz illuminates these remarkable slices of mountain life in plain but engaging language. Whether it sketches conflict or cooperation, surprise or familiarity, each story resolves when interpreted through the theory of evolution by natural selection.   These provocative accounts of birds, insects, rodents, predators, trees, and flowers are sure to stir the reader’s curiosity. Who wouldn’t be intrigued by a rattlesnake’s ability to hunt in total darkness by detecting the infrared radiation emitted by a mouse? Or how white-tailed ptarmigan thrive in their high, treeless alpine environments -- even through the winter? The narratives, often brought home with a counterintuitive twist, invite readers to make new connections and broaden perspectives of a favorite outdoor place. 
Inference about density and temporary emigration in unmarked populations
Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either \"completely random\" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers ( Dendroica pensylvancia ) in the White Mountain National Forest, USA. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked .
Map and track mountains
\"Mountains are alpine biomes, which are home to an intriguing number of plants and animals. Some mountain animals, such as the yak, have been adapted for agriculture by humans. This ... book soars to new heights with simple-to-understand maps and detailed facts about an often-overlooked biome\"-- Provided by publisher.
Microbial community composition explains soil respiration responses to changing carbon inputs along an Andes‐to‐Amazon elevation gradient
The Andes are predicted to warm by 3–5 °C this century with the potential to alter the processes regulating carbon (C) cycling in these tropical forest soils. This rapid warming is expected to stimulate soil microbial respiration and change plant species distributions, thereby affecting the quantity and quality of C inputs to the soil and influencing the quantity of soil‐derived CO₂ released to the atmosphere. We studied tropical lowland, premontane and montane forest soils taken from along a 3200‐m elevation gradient located in south‐east Andean Peru. We determined how soil microbial communities and abiotic soil properties differed with elevation. We then examined how these differences in microbial composition and soil abiotic properties affected soil C‐cycling processes, by amending soils with C substrates varying in complexity and measuring soil heterotrophic respiration (RH). Our results show that there were consistent patterns of change in soil biotic and abiotic properties with elevation. Microbial biomass and the abundance of fungi relative to bacteria increased significantly with elevation, and these differences in microbial community composition were strongly correlated with greater soil C content and C:N (nitrogen) ratios. We also found that RH increased with added C substrate quality and quantity and was positively related to microbial biomass and fungal abundance. Statistical modelling revealed that RH responses to changing C inputs were best predicted by soil pH and microbial community composition, with the abundance of fungi relative to bacteria, and abundance of gram‐positive relative to gram‐negative bacteria explaining much of the model variance. Synthesis. Our results show that the relative abundance of microbial functional groups is an important determinant of RH responses to changing C inputs along an extensive tropical elevation gradient in Andean Peru. Although we do not make an experimental test of the effects of climate change on soil, these results challenge the assumption that different soil microbial communities will be ‘functionally equivalent’ as climate change progresses, and they emphasize the need for better ecological metrics of soil microbial communities to help predict C cycle responses to climate change in tropical biomes.
Life on a mountain
\"Simple text and full-color photography introduce beginning readers to life on a mountain. Developed by literacy experts for students in kindergarten through third grade\"-- Provided by publisher.
Camera Trapping Photographic Rate as an Index of Density in Forest Ungulates
1. Calibrating indices of animal abundance to true densities is critical in wildlife studies especially when direct density estimations are precluded by high costs, lack of required data or model parameters, elusiveness and rarity of target species. For studies deploying camera traps, the use of photographic rate (photographs per sampling time) as an index of abundance potentially applies to the majority of terrestrial mammals where individual recognition, and hence capture—recapture analysis, are unfeasible. The very few studies addressing this method have either been limited by lack of independence between trapping rates and density estimations, or because they combined different species, thus introducing potential bias in camera trap detection rates. This study uses a single model species from several sites to analyse calibration of trapping rates to independently derived estimations of density. The study also makes the first field test of the method by Rowcliffe et al. (2008) for density derivation from camera trapping rates based on modelling animal-camera contacts. 2. We deployed camera traps along line transects at six sites in the Udzungwa Mountains of Tanzania and correlated trapping rates of Harvey's duiker Cephalophus harveyi with densities estimated from counts made along the same transects. 3. We found a strong, linear relationship (R² = 0·90) between trapping rate and density. Sampling precision analysis indicates that camera trapping rates reach satisfactory precision when trapping effort amounts to 250-300 camera days. Density estimates using Rowcliffe et al.'s (2008) gas model conversion are higher than from transect censuses; we discuss the possible reasons and stress the need for more field tests. 4. Synthesis and applications. Subject to rigorous and periodic calibration, and standardization of sampling procedures in time and over different sites, camera trapping rate is shown to be, in this study, a valid index of density in the target species. Comparative data indicate that this may also apply to forest ungulates in general. The method has great potential for standardizing monitoring programmes and reducing the costs of wildlife surveys, especially in remote areas.
Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests
Recent world-wide episodes of tree dieback have been attributed to increasing temperatures and associated drought. Because these events are likely to become more common, improved knowledge of their cumulative effects on resilience and the ability to recover pre-disturbance conditions is important for forest management. Here we propose several indices to examine components of individual tree resilience based on tree ring growth: resistance (inverse of growth reduction during the episode), recovery (growth increase relative to the minimum growth during the episode), resilience (capacity to reach pre-episode growth levels) and relative resilience (resilience weighted by the damage incurred during the episode). Based on tree ring analyses, we analyzed historical patterns of tree resilience to successive drought-induced low growth periods in ponderosa pine trees growing in unmanaged, remote forests of the Rocky Mountains. Low-growth periods registered in tree rings were related to anomalies in the Palmer drought severity index (PDSI) and were attributed to drought. Independently of the impact of a specific event, subsequent growth after a single low-growth episode was related to the growth prior to the event. Growth performance differed with tree age: young trees were overall more resistant to low-growth periods, but older trees recovered better from more recent events. Regardless of tree age, recently burned sites exhibited lower post-episode growth and lower resistance and resilience than unburned ones. We found mixed evidence for the cumulative effect of past low-growth episodes: overall, greater impacts of a prior event and greater cumulative effects of past low-growth periods caused a decrease in resistance. However, we did not find a progressive decrease in resilience over time in old trees. Our results highlight the value of using a combination of estimators to evaluate the different components of resilience. Specifically, while tree responses to disturbance depend on past disturbance episodes, the response is context-specific and depends on the impact the capacity to recover after disturbance. This suggests that recent increases in forest mortality under current climate trends could relate to thresholds on specific components of resilience (resistance, recovery, resilience itself) rather than to an overall loss of resilience over time. Identifying such thresholds and their underlying mechanisms is a promising area of research with important implications for forest management.