Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
3,960 result(s) for "Mountaineering."
Sort by:
Isokinetic Knee Strength as a Predictor of Performance in Elite Ski Mountaineering Sprint Athletes
Background and Objectives: This study aims to investigate the relationship between isokinetic knee strength and competition performance in elite male ski mountaineering sprint athletes and to identify strength parameters that predict performance and contribute to injury prevention. Materials and Methods: Thirteen male athletes participating in the Ski Mountaineering Turkey Cup final stage were included. Isokinetic knee flexion (FLX) and extension (EXT) strength of dominant (DM) and non-dominant (NDM) legs were measured at angular velocities of 60°/s and 180°/s using the DIERS-Myolin Isometric Muscle Strength Analysis System. Competition performance was evaluated using the ISMF scoring system. Data were analyzed using SPSS 26.0 with Pearson correlation and multiple regression analyses after normality, linearity, and homoscedasticity checks. Results: Strong positive correlations were found between hamstring strength at high angular velocities (180°/s) and performance (DM FLX: r = 0.809; NDM FLX: r = 0.880). Extension strength showed moderate correlations at low velocities (60°/s) (DM EXT: r = 0.677; NDM EXT: r = 0.699). Regression analysis revealed that DM FLX at 180°/s and DM EXT at 60°/s explained 49% of performance variance (Adj. R2 = 0.498). For NDM legs, only 180°/s FLX was a significant predictor (β = 1.468). Conclusions: High-velocity hamstring strength plays a critical role in ski mountaineering sprint performance, particularly during sudden directional changes and dynamic balance. Quadriceps strength at low velocities contributes to prolonged climbing phases. Moreover, identifying and addressing bilateral strength asymmetries may support injury prevention strategies in elite ski mountaineering athletes. These findings provide scientific support for designing training programs targeting explosive hamstring strength, bilateral symmetry, and injury risk reduction, essential for optimizing performance in the 2026 Winter Olympics sprint discipline.
The effects of five weeks of climbing training, on and off the wall, on climbing specific strength, performance, and training experience in female climbers—A randomized controlled trial
Recent research has elucidated the effects of strength training on climbing performance. Although local muscular endurance training of the upper-limbs and finger flexors is frequently suggested, there is currently insufficient evidence to support its impact on climbing performance and climbing-specific strength. Furthermore, there is no evidence on climbers’ experiences related to training and the likelihood of consistent engagement. In addition, the effects of more climbing-specific strength training on walls with built in lights and adjustable angles have yet to be examined. The low percentage of studies involving female subjects, additionally, demonstrates a significant gap in understanding the specific effects of strength training on women in the context of climbing. The aim of this study was thus to assess the effects of five-week on-, and off-the-wall climbing training on climbing performance, climbing-specific strength, and training experience. Thirty-one female lower-grade to advanced climbers were randomly assigned to either a control group, an off-the-wall training or an on-the-wall training group. Apart from the training regimen, all groups followed their usual climbing and bouldering routine. Subjects trained at least twice a week. Bouldering performance, and maximum strength and muscular endurance of the finger flexors and upper-limbs were assessed before and after the intervention. Furthermore, rate of perceived exertion and discomfort, exercise enjoyment, and exercise pleasure were assessed during the first and last training session, as well as after two and a half weeks of training. Intrinsic training motivation was assessed after the last training session. The results showed trends towards positive effects of off-the-wall training on climbing-specific strength, and on-the-wall training on climbing technique. Furthermore, our finding revealed high exercise enjoyment and intrinsic training motivation for both on- and off-the-wall training. Hence, lower-grade to advanced female climbers should rely on personal training preferences.
Mountain clmbing
\"In this exciting book, readers will discover the breathtaking world of mountain climbing. Discover the stunning environments climbers have ascended to, and the history of mountain climbing.\"--Provided by publisher.
Assessing the Impact of Neuromuscular Electrical Stimulation-Based Fingerboard Training versus Conventional Fingerboard Training on Finger Flexor Endurance in Intermediate to Advanced Sports Climbers: A Randomized Controlled Study
Competitive climbers engage in highly structured training regimens to achieve peak performance levels, with efficient time management as a critical aspect. Neuromuscular electrical stimulation (NMES) training can close the gap between time-efficient conditioning training and achieving optimal prerequisites for peak climbing-specific performances. Therefore, we examined potential neuromuscular adaptations resulting from the NMFES intervention by analyzing the efficacy of twice-weekly NMES-supported fingerboard (hang board) training compared with thrice-weekly conventional fingerboard training over 7 training weeks in enhancing climbing-specific endurance among intermediate to advanced climbers. Participants were randomly divided into the NMES and control groups. Eighteen participants completed the study (14 male, 4 female; mean age: 25.7 ± 5.3 years; mean climbing experience: 6.4 ± 3.4 years). Endurance was assessed by measuring the maximal time athletes could support their body weight (hanging to exhaustion) on a 20 mm-deep ledge at three intervals: pre-, in-between- (after 4 weeks of training), and post-training (after 7 weeks of training). The findings revealed that despite the lower training volume in the NMES group, no significant differences were observed between the NMES and control groups in climbing-specific endurance. Both groups exhibited notable improvements in endurance, particularly after the in-between test. Consequently, a twice-weekly NMES-supported fingerboard training regimen demonstrated non-inferiority to a thrice-weekly conventional training routine. Incorporating NMES into fingerboard workouts could offer time-saving benefits.
Dual-task interference between climbing and a simulated communication task
Climbers often need to maintain communication with other people. Previous research indicates that climbers remember less of the information communicated to them while climbing than when not climbing. In the present research, we investigated at what stage of memory the source of this impairment occurs. Participants were required to respond to words presented to them by saying out loud an associated word. This enforced encoding of the words, and was completed alone, as well as while climbing. Participants then recalled as many words as possible. A separate single-task condition had participants climb without making word associations. Word recall was reduced in the dual-task compared with the single word association task, but there was no difference in the number of word associations made. This indicates that the reduction in word recall was not a result of reduced encoding in the dual-task condition. Concurrent climbing may have reduced word recall by interfering with rehearsal and maintenance of words in memory.