Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
40 result(s) for "Mpox (monkeypox) - veterinary"
Sort by:
Assessing Monkeypox Virus Prevalence in Small Mammals at the Human–Animal Interface in the Democratic Republic of the Congo
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
One Health Investigation into Mpox and Pets, United States
Monkeypox virus (MPXV) is zoonotic and capable of infecting many mammal species. However, whether common companion animals are susceptible to MPXV infection is unclear. During July 2022-March 2023, we collected animal and environmental swab samples within homes of confirmed human mpox case-patients and tested for MPXV and human DNA by PCR. We also used ELISA for orthopoxvirus antibody detection. Overall, 12% (22/191) of animal and 25% (14/56) of environmental swab samples from 4 households, including samples from 4 dogs and 1 cat, were positive for MPXV DNA, but we did not detect viable MPXV or orthopoxvirus antibodies. Among MPXV PCR-positive swab samples, 82% from animals and 93% from environment amplified human DNA with a statistically significant correlation in observed cycle threshold values. Our findings demonstrate likely DNA contamination from the human mpox cases. Despite the high likelihood for exposure, we found no indications that companion animals were infected with MPXV.
Pathogenicity and contact transmissibility of clade IIb MPXV in African dormice
The global outbreak of monkeypox virus (MPXV) in 2022 raised widespread scientific concern regarding potential changes in its biological characteristics. In this study, we conducted research on the pathogenicity and transmissibility of the currently circulating MPXV Clade IIb strain. Dormice were infected via intranasal (I.N.) inoculation with MPXV at three different doses: 10 , 10 and 10 TCID , respectively. Body weight changes, survival rates, viral loads in various tissues, we monitored the pathological changes in lung tissues and evaluated the transmissibility of the virus among dormice through direct contact with infected dormouse mice or exposure to contaminated fomites. The results showed that higher infection doses of MPXV infection in dormice led to more severe the weight loss and mortality rate, broader tissue distribution, and greater viral replication, indicating a positive correlation between MPXV pathogenicity and infection dose. Furthermore, infected dormice successfully transmitted MPXV to co-housed naïve animals, and indirect exposure to contaminated objects also resulted in infection. These findings suggest that MPXV can be transmitted through both direct contact with infected individuals and contaminated surfaces. This study enhances our understanding of the pathogenic and transmission characteristics of the MPXV strain responsible for the 2022 outbreak and provides valuable insights for MPXV prevention and control efforts.
Characterization of Monkeypox virus dissemination in the black-tailed prairie dog (Cynomys ludovicianus) through in vivo bioluminescent imaging
Monkeypox virus (MPXV) is a member of the genus Orthopoxvirus, endemic in Central and West Africa. This viral zoonosis was introduced into the United States in 2003 via African rodents imported for the pet trade and caused 37 human cases, all linked to exposure to MPXV-infected black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs have since become a useful model of MPXV disease, utilized for testing of potential medical countermeasures. In this study, we used recombinant MPXV containing the firefly luciferase gene (luc) and in vivo imaging technology to characterize MPXV pathogenesis in the black-tailed prairie dog in real time. West African (WA) MPXV could be visualized using in vivo imaging in the nose, lymph nodes, intestines, heart, lung, kidneys, and liver as early as day 6 post infection (p.i.). By day 9 p.i., lesions became visible on the skin and in some cases in the spleen. After day 9 p.i., luminescent signal representing MPXV replication either increased, indicating a progression to what would be a fatal infection, or decreased as infection was resolved. Use of recombinant luc+ MPXV allowed for a greater understanding of how MPXV disseminates throughout the body in prairie dogs during the course of infection. This technology will be used to reduce the number of animals required in future pathogenesis studies as well as aid in determining the effectiveness of potential medical countermeasures.
The Detection of Monkeypox in Humans in the Western Hemisphere
In June 2003, monkeypox was diagnosed in several patients in the midwestern United States who presented with fever, sweats, skin lesions, and lymphadenopathy. This investigation describes the initial 11 patients in the outbreak, all of whom had contact with ill pet prairie dogs from the same distributor. The infection was traced to rodents imported from West Africa. Monkeypox is an uncommon viral zoonosis caused by a member of the genus orthopoxvirus. 1 Monkeypox was initially recognized in 1958 as a viral eruption of captive primates. The first cases in humans were reported in 1970 in Zaire (now the Democratic Republic of Congo). 1 Since then, monkeypox has occurred sporadically in humans throughout that region 2 – 9 but has not been reported outside Africa. During May and June 2003, an outbreak of febrile illness with skin eruptions occurred among residents of the midwestern United States. 10 All patients reported having contact with sick pet prairie dogs (cynomys species) obtained through a common . . .
Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)
Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.
Experimental inoculation of pigs with monkeypox virus results in productive infection and transmission to sentinels
Monkeypox virus (MPXV) is a re-emerging zoonotic poxvirus responsible for producing skin lesions in humans. Endemic in sub-Saharan Africa, the 2022 outbreak with a clade IIb strain has resulted in ongoing sustained transmission of the virus worldwide. MPXV has a relatively wide host range, with infections reported in rodent and non-human primate species. However, the susceptibility of many domestic livestock species remains unknown. Here, we report on a susceptibility/transmission study in domestic pigs that were experimentally inoculated with a 2022 MPXV clade IIb isolate or served as sentinel contact control animals. Several principal-infected and sentinel contact control pigs developed minor lesions near the lips and nose starting at 12 through 18 days post-challenge (DPC). No virus was isolated and no viral DNA was detected from the lesions; however, MPXV antigen was detected by IHC in tissue from a pustule of a principal infected pig. Viral DNA and infectious virus were detected in nasal and oral swabs up to 14 DPC, with peak titers observed at 7 DPC. Viral DNA was also detected in nasal tissues or skin collected from two principal-infected animals at 7 DPC post-mortem. Furthermore, all principal-infected and sentinel control animals enrolled in the study seroconverted. In conclusion, we provide the first evidence that domestic pigs are susceptible to experimental MPXV infection and can transmit the virus to contact animals.