Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
601 result(s) for "Mucin-1 - genetics"
Sort by:
MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer
Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective targeted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor (AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C suppresses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4 and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tissues, MUC1 expression associates with suppression of AR signaling and increases in BRN2 expression and NEPC score. These results highlight MUC1-C as a master effector of lineage plasticity driving progression to NEPC. MUC1-C is overexpressed in castration-resistant prostate cancer and neuroendocrine prostate cancer. Here, the authors show that MUC1-C drives lineage plasticity through MYC and BRN2, inducing neuroendocrine features and stemness in prostate cancer.
GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression
Genetic factors are recognized to contribute to peptic ulcer disease (PUD) and other gastrointestinal diseases, such as gastro-oesophageal reflux disease (GORD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Here, genome-wide association study (GWAS) analyses based on 456,327 UK Biobank (UKB) individuals identify 8 independent and significant loci for PUD at, or near, genes MUC1 , MUC6, FUT2 , PSCA , ABO , CDX2, GAST and CCKBR . There are previously established roles in susceptibility to Helicobacter pylori infection, response to counteract infection-related damage, gastric acid secretion or gastrointestinal motility for these genes. Only two associations have been previously reported for duodenal ulcer, here replicated trans-ancestrally. The results highlight the role of host genetic susceptibility to infection. Post-GWAS analyses for PUD, GORD, IBS and IBD add insights into relationships between these gastrointestinal diseases and their relationships with depression, a commonly comorbid disorder. Genetic factors contribute to peptic ulcer disease (PUD). Here, the authors perform a genome-wide association analysis on PUD in the UK Biobank, highlighting shared architecture with other gastrointestinal disorders and possible causal links with depression.
Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease
Intestinal barrier defects are common in patients with inflammatory bowel disease (IBD). To identify which components could underlie these changes, we performed an in-depth analysis of epithelial barrier genes in IBD.MethodsA set of 128 intestinal barrier genes was selected. Polygenic risk scores were generated based on selected barrier gene variants that were associated with Crohn's disease (CD) or ulcerative colitis (UC) in our study. Gene expression was analyzed using microarray and quantitative reverse transcription polymerase chain reaction. Influence of barrier gene variants on expression was studied by cis-expression quantitative trait loci mapping and comparing patients with low- and high-risk scores.ResultsBarrier risk scores were significantly higher in patients with IBD than controls. At single-gene level, the associated barrier single-nucleotide polymorphisms were most significantly enriched in PTGER4 for CD and HNF4A for UC. As a group, the regulating proteins were most enriched for CD and UC. Expression analysis showed that many epithelial barrier genes were significantly dysregulated in active CD and UC, with overrepresentation of mucus layer genes. In uninflamed CD ileum and IBD colon, most barrier gene levels restored to normal, except for MUC1 and MUC4 that remained persistently increased compared with controls. Expression levels did not depend on cis-regulatory variants nor combined genetic risk.ConclusionsWe found genetic and transcriptomic dysregulations of key epithelial barrier genes and components in IBD. Of these, we believe that mucus genes, in particular MUC1 and MUC4, play an essential role in the pathogenesis of IBD and could represent interesting targets for treatment.
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
Anthony Bleyer, Eric Lander, Mark Daly and colleagues show that frameshift mutations in a large VNTR of MUC1 cause medullary cystic kidney disease type 1. Their discovery sheds light on the biology of this disease and highlights challenges in using massively parallel sequencing technologies to characterize certain types of sequence variants. Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.
MUC1 Tissue Expression and Its Soluble Form CA15-3 Identify a Clear Cell Renal Cell Carcinoma with Distinct Metabolic Profile and Poor Clinical Outcome
An altered metabolism is involved in the development of clear cell renal carcinoma (ccRCC). MUC1 overexpression has been found to be associated with advanced disease and poor prognosis. In this study, we evaluated the metabolomic profile of human ccRCC, according to MUC1 expression, and integrated it with transcriptomic data. Moreover, we analyzed the role of MUC1 in sustaining ccRCC aggressiveness and the prognostic value of its soluble form CA15-3. Integrated metabolomic and transcriptomic analysis showed that MUC1-expressing ccRCC was characterized by metabolic reprogramming involving the glucose and lipid metabolism pathway. In addition, primary renal cancer cells treated with a small interfering RNA targeting MUC1 (siMUC1) migrated and proliferated at a slower rate than untreated cancer cells. After cisplatin treatment, the death rate of cancer cells treated with siMUC1 was significantly greater than that of untreated cells. Kaplan–Meier curves showed significant differences in CSS and PFS among groups of patients with high versus low levels of CA15-3. In a multivariate analysis, CA15-3 was an independent adverse prognostic factor for cancer-specific and progression-free survival. In conclusion, MUC1 expressing ccRCC is characterized by a particular metabolic reprogramming. The inhibition of MUC1 expression decreases cell motility and viability and improves cisplatin susceptibility, suggesting that this pathway can regulate de novo chemotherapy resistance in ccRCC.
MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion into enterocytes
The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1. Knockout of MUC1 in HT29-MTX cells or removal of MUC1 sialic acids by neuraminidase treatment reduced Salmonella apical invasion but did not affect lateral invasion that is not hampered by a defensive barrier. A Salmonella deletion strain lacking the SiiE giant adhesin was unable to invade intestinal epithelial cells through MUC1. SiiE-positive Salmonella closely associated with the MUC1 layer at the apical surface, but invaded Salmonella were negative for the adhesin. Our findings uncover that the transmembrane mucin MUC1 is required for Salmonella SiiE-mediated entry of enterocytes via the apical route.
MUC1-C regulates NEAT1 lncRNA expression and paraspeckle formation in cancer progression
The MUC1 gene evolved in mammals for adaptation of barrier tissues in response to infections and damage. Paraspeckles are nuclear bodies formed on the NEAT1 lncRNA in response to loss of homeostasis. There is no known intersection of MUC1 with NEAT1 or paraspeckles. Here, we demonstrate that the MUC1-C subunit plays an essential role in regulating NEAT1 expression. MUC1-C activates the NEAT1 gene with induction of the NEAT1_1 and NEAT1_2 isoforms by NF-κB- and MYC-mediated mechanisms. MUC1-C/MYC signaling also induces expression of the SFPQ, NONO and FUS RNA binding proteins (RBPs) that associate with NEAT1_2 and are necessary for paraspeckle formation. MUC1-C integrates activation of NEAT1 and RBP-encoding genes by recruiting the PBAF chromatin remodeling complex and increasing chromatin accessibility of their respective regulatory regions. We further demonstrate that MUC1-C and NEAT1 form an auto-inductive pathway that drives common sets of genes conferring responses to inflammation and loss of homeostasis. Of functional significance, we find that the MUC1-C/NEAT1 pathway is of importance for the cancer stem cell (CSC) state and anti-cancer drug resistance. These findings identify a previously unrecognized role for MUC1-C in the regulation of NEAT1, RBPs, and paraspeckles that has been co-opted in promoting cancer progression.
New Markers for Separating Benign From Malignant Mesothelial Proliferations: Are We There Yet?
The separation of benign from malignant mesothelial proliferations is crucial to patient care but is frequently morphologically difficult. To briefly review adjunctive tests claimed to be useful in this setting and to examine in detail 2 new tests: p16 fluorescence in situ hybridization (FISH) and BRCA1-associated protein 1 (BAP1) immunohistochemistry. Literature review with emphasis on p16 FISH and BAP1 immunohistochemistry. Glucose transporter-1, p53, insulin-like growth factor 2 messenger RNA-binding protein 3 (IMP-3), desmin, and epithelial membrane antigen have all been claimed to mark either benign or malignant mesothelial processes, but in practice they at best provide statistical differences in large series of cases, without being useful in an individual case. Homozygous deletion of p16 by FISH or loss of BAP1 has only been reported in malignant mesotheliomas and not in benign mesothelial proliferations. BAP1 appears to be lost more frequently in epithelial than mixed or sarcomatous mesotheliomas. Homozygous deletion of p16 by FISH is seen in pleural epithelial, mixed, and sarcomatous mesotheliomas, but it is much less frequent in peritoneal mesothelioma. The major drawback to both these tests is limited sensitivity; moreover, failure to find p16 deletion or BAP1 loss does not make a mesothelial process benign. In the context of a mesothelial proliferation, the finding of homozygous deletion of p16 by FISH or loss of BAP1 by immunohistochemistry is, thus far, 100% specific for malignant mesothelioma. The limited sensitivity of each test may be improved to some extent by running both tests.
The Role of MUC1 in Renal Cell Carcinoma
Mucins are a family of high-molecular-weight glycoproteins. MUC1 is widely studied for its role in distinct types of cancers. In many human epithelial malignancies, MUC1 is frequently overexpressed, and its intracellular activities are crucial for cell biology. MUC1 overexpression can enhance cancer cell proliferation by modulating cell metabolism. When epithelial cells lose their tight connections, due to the loss of polarity, the mucins become dispersed on both sides of the epithelial membrane, leading to an abnormal mucin interactome with the membrane. Tumor-related MUC1 exhibits certain features, such as loss of apical localization and aberrant glycosylation that might cause the formation of tumor-related antigen epitopes. Renal cell carcinoma (RCC) accounts for approximately 3% of adult malignancies and it is the most common kidney cancer. The exact role of MUC1 in this tumor is unknown. Evidence suggests that it may play a role in several oncogenic pathways, including proliferation, metabolic reprogramming, chemoresistance, and angiogenesis. The purpose of this review is to explore the role of MUC1 and the meaning of its overexpression in epithelial tumors and in particular in RCC.
The MUC1 mucin protects against Helicobacter pylori pathogenesis in mice by regulation of the NLRP3 inflammasome
ObjectivesThe mucin MUC1, best known for providing an epithelial barrier, is an important protective host factor in both humans and mice during Helicobacter pylori pathogenesis. This study aimed to identify the long-term consequences of MUC1 deficiency on H. pylori pathogenesis and the mechanism by which MUC1 protects against H. pylori gastritis.DesignWildtype and Muc1−/− mice were infected for up to 9 months, and the gastric pathology, immunological response and epigenetic changes assessed. The effects of MUC1 on the inflammasome, a potent inflammatory pathway, were examined in macrophages and H. pylori-infected mice deficient in both MUC1 and inflammasome components.ResultsMuc1−/− mice began to die 6 months after challenge, indicating Muc1 deficiency made H. pylori a lethal infection. Surprisingly, chimaeric mouse infections revealed MUC1 expression by haematopoietic-derived immune cells limits H. pylori-induced gastritis. Gastritis in infected Muc1−/− mice was associated with elevated interleukin (IL)-1β and epigenetic changes in their gastric mucosa similar to those in transgenic mice overexpressing gastric IL-1β, implicating MUC1 regulation of an inflammasome. In support of this, infected Muc1−/−Casp1−/− mice did not develop severe gastritis. Further, MUC1 regulated Nlrp3 expression via an nuclear factor (NF)-κB-dependent pathway and reduced NF-κB pathway activation via inhibition of IRAK4 phosphorylation. The importance of this regulation was proven using Muc1−/−Nlrp3−/− mice, which did not develop severe gastritis.ConclusionsMUC1 is an important, previously unidentified negative regulator of the NLRP3 inflammasome. H. pylori activation of the NLRP3 inflammasome is normally tightly regulated by MUC1, and loss of this critical regulation results in the development of severe pathology.