Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
2,074
result(s) for
"Mucins - chemistry"
Sort by:
A head-to-head comparison of polymer interaction with mucin from porcine stomach and bovine submaxillary glands
by
Kirkensgaard, Jacob Judas Kain
,
Tuelung, Pernille Sønderby
,
Stie, Mai Bay
in
631/443
,
631/57
,
692/4020
2024
Native mucus is heterogeneous, displays high inter-individual variation and is prone to changes during harvesting and storage. To overcome the lack of reproducibility and availability of native mucus, commercially available purified mucins, porcine gastric mucin (PGM) and mucin from bovine submaxillary gland (BSM), have been widely used. However, the question is to which extent the choice of mucin matters in studies of their interaction with polymers as their composition, structure and hence physicochemical properties differ. Accordingly, the interactions between PGM or BSM with two widely used polymers in drug delivery, polyethylene oxide and chitosan, was studied with orthogonal methods: turbidity, dynamic light scattering, and quartz crystal microbalance with dissipation monitoring. Polymer binding and adsorption to the two commercially available and purified mucins, PGM and BSM, is different depending on the mucin type. PEO, known to interact weakly with mucin, only displayed limited interaction with both mucins as confirmed by all employed methods. In contrast, chitosan was able to bind to both PGM and BSM. Interestingly, the results suggest that chitosan interacts with BSM to a greater extent than with PGM indicating that the choice of mucin, PGM or BSM, can affect the outcome of studies of mucin interactions with polymers.
Journal Article
The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins
by
Woods, Elliot C.
,
Malaker, Stacy A.
,
Yu, Jin
in
Amino Acid Motifs
,
Antigens, CD - chemistry
,
Antigens, Differentiation, Myelomonocytic - chemistry
2019
Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE’s unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.
Journal Article
Mucin dynamics and enteric pathogens
2011
Key Points
The gastrointestinal tract presents a continuous secreted and cell surface barrier to potential enteric pathogens. Specialized gastrointestinal epithelial cells secrete large amounts of mucin glycoproteins and antimicrobial molecules that, together, form the mucus barrier to infection. Although the lumen of the gastrointestinal tract contains large numbers of commensal microorganisms, the inner layers of mucus are sterile.
Secreted mucins are large, heavily
O
-glycosylated glycoproteins that are produced by goblet cells. During their biosynthesis, mucins homo-oligomerize into complex polymeric networks that, when secreted, give mucus its viscoelastic properties.
Antimicrobial molecules are produced throughout the gastrointestinal tract but particularly by the specialized Paneth cells in the small intestine. These molecules target different classes of pathogens and help keep the inner mucus layer sterile.
Cell surface mucins are heavily
O
-glycosylated transmembrane glycoproteins that are present on the apical surface of all gastrointestinal epithelial cells. These mucins limit binding of pathogens to epithelial cells by steric hindrance and by acting as releasable decoys for microbial adhesins.
Deficiencies in secreted or cell surface mucins in animal models lead to increased pathology during infection.
Pathogens have evolved multiple strategies to penetrate the mucosal barrier, including: disruption and penetration of the mucus, avoidance of the mucus barrier, and disruption of epithelial integrity and epithelial production of barrier components.
The production of components of the mucus barrier is influenced by the normal microbiota and by both innate and adaptive immune responses to pathogens. There are changes in the rate of mucus production and the content of mucus in response to infection; these factors are components of the mechanism of clearance of enteric pathogens and parasites.
The mucus barrier provides a crucial defence against commensal microorganisms and enteric pathogens. In this Review, McGuckin and colleagues describe the structure of the mucus barrier and discuss how the composition of the mucus layer is regulated under normal conditions and in response to infection.
The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.
Journal Article
Immunological aspects of intestinal mucus and mucins
by
Hansson, Gunnar C.
,
Johansson, Malin E. V.
in
631/250/347
,
692/4020/2741/278
,
692/4020/2741/520
2016
Key Points
Mucins are highly
O
-glycosylated molecules that have gel-like properties. The mucin family consists of transmembrane mucins and gel-forming mucins. The transmembrane mucins cover the apical surfaces of the enterocytes and form the glycocalyx. The gel-forming mucins are secreted from goblet cells as large multimers that form the mucus skeleton and cover all epithelial surfaces.
Mucus in the small intestine forms a diffusion barrier where antimicrobial substances keep the epithelium free from microorganism. Mucus in the colon forms a dense inner mucus layer that bacteria are unable to penetrate, creating a bacteria-free zone at the epithelial surface.
Some, but not all, bacteria stimulate the formation of a functional mucus system with removable mucus in the small intestine and a stratified impenetrable inner mucus layer in colon.
Mucus in the intestine creates a niche for bacteria, with digestible glycans providing a stable energy source, but mucus also traps and removes bacteria. Bacteria in loose mucus are planktonic and less virulent.
The small intestinal goblet cells can sample luminal material during mucus secretion and transfer the antigens to lamina propria dendritic cells, something that also happens in the colon if bacterial numbers are decreased. This communication with the immune system has tolerogenic effects.
Intestinal pathogens have mechanisms that allow them to circumvent the mucus protection to reach the epithelium. These include good motility and secretion of enzymes that can degrade the otherwise protease-resistant mucins.
This Review describes the unique properties of mucus and mucins, with a focus on the intestine. Mucus and mucus-producing goblet cells contribute to our innate immune defences and, in turn, are regulated by the immune system. The authors discuss the link between defective mucus production and increased susceptibility to infection and inflammatory disease.
A number of mechanisms ensure that the intestine is protected from pathogens and also against our own intestinal microbiota. The outermost of these is the secreted mucus, which entraps bacteria and prevents their translocation into the tissue. Mucus contains many immunomodulatory molecules and is largely produced by the goblet cells. These cells are highly responsive to the signals they receive from the immune system and are also able to deliver antigens from the lumen to dendritic cells in the lamina propria. In this Review, we will give a basic overview of mucus, mucins and goblet cells, and explain how each of these contributes to immune regulation in the intestine.
Journal Article
Experimental models to study intestinal microbes–mucus interactions in health and disease
by
Schüller, Stephanie
,
University of East Anglia [Norwich] (UEA)
,
Universiteit Gent = Ghent University = Université de Gand (UGENT)
in
Animals
,
Bacteria
,
Critical components
2019
One sentence summary: The review summarises the state of the art for studying gut microbes-mucus interactions using in vitro, ex vivo and in vivo experimental models. Editor: Ehud Banin † These authors contributed equally to this work ABSTRACT A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Journal Article
Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity
by
Lawrence, Travis J
,
Turner, Bradley S
,
Wozniak, Daniel J
in
Antifungal agents
,
Biofilms
,
Candida albicans
2022
Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.Glycomic profiling of mucosal surfaces identified O-mucin glycoconjugate motifs that regulate Candida albicans virulence. Synthetic analogs based on these glycans suppress fungal filamentation, offering potential for antifungal development.
Journal Article
Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown
by
Baslé, Arnaud
,
Urbanowicz, Paulina A.
,
Berrington, Janet E.
in
631/45/221
,
631/535/1266
,
82/58
2020
The thick mucus layer of the gut provides a barrier to infiltration of the underlying epithelia by both the normal microbiota and enteric pathogens. Some members of the microbiota utilise mucin glycoproteins as a nutrient source, but a detailed understanding of the mechanisms used to breakdown these complex macromolecules is lacking. Here we describe the discovery and characterisation of endo-acting enzymes from prominent mucin-degrading bacteria that target the polyLacNAc structures within oligosaccharide side chains of both animal and human mucins. These O-glycanases are part of the large and diverse glycoside hydrolase 16 (GH16) family and are often lipoproteins, indicating that they are surface located and thus likely involved in the initial step in mucin breakdown. These data provide a significant advance in our knowledge of the mechanism of mucin breakdown by the normal microbiota. Furthermore, we also demonstrate the potential use of these enzymes as tools to explore changes in O-glycan structure in a number of intestinal disease states.
Epithelial cells that line the gut secrete complex glycoproteins that form a mucus layer to protect the gut wall from enteric pathogens. Here, the authors provide a comprehensive characterisation of endo-acting glycoside hydrolases expressed by mucin-degrading members of the microbiome that are able to cleave the O-glycan chains of a range of different animal and human mucins.
Journal Article
Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus
by
Banik, Steven M.
,
Webster, Elizabeth R.
,
Boxer, Steven G.
in
Binding
,
Biological Sciences
,
Biophysics and Computational Biology
2020
The mechanism(s) by which cell-tethered mucins modulate infection by influenza A viruses (IAVs) remain an open question. Mucins form both a protective barrier that can block virus binding and recruit IAVs to bind cells via the sialic acids of cell-tethered mucins. To elucidate the molecular role of mucins in flu pathogenesis, we constructed a synthetic glycocalyx to investigate membranetethered mucins in the context of IAV binding and fusion. We designed and synthesized lipid-tethered glycopolypeptide mimics of mucins and added them to lipid bilayers, allowing chemical control of length, glycosylation, and surface density of a model glycocalyx. We observed that the mucin mimics undergo a conformational change at high surface densities from a compact to an extended architecture. At high surface densities, asialo mucin mimics inhibited IAV binding to underlying glycolipid receptors, and this density correlated to the mucin mimic’s conformational transition. Using a single virus fusion assay, we observed that while fusion of virions bound to vesicles coated with sialylated mucin mimics was possible, the kinetics of fusion was slowed in a mucin density-dependent manner. These data provide a molecular model for a protective mechanism by mucins in IAV infection, and therefore this synthetic glycocalyx provides a useful reductionist model for studying the complex interface of host–pathogen interactions.
Journal Article
Development and Functional Properties of Intestinal Mucus Layer in Poultry
by
Zentek, Jürgen
,
Duangnumsawang, Yada
,
Goodarzi Boroojeni, Farshad
in
Amino Acids - administration & dosage
,
Amino Acids - pharmacology
,
Animal Feed
2021
Intestinal mucus plays important roles in protecting the epithelial surfaces against pathogens, supporting the colonization with commensal bacteria, maintaining an appropriate environment for digestion, as well as facilitating nutrient transport from the lumen to the underlying epithelium. The mucus layer in the poultry gut is produced and preserved by mucin-secreting goblet cells that rapidly develop and mature after hatch as a response to external stimuli including environmental factors, intestinal microbiota as well as dietary factors. The ontogenetic development of goblet cells affects the mucin composition and secretion, causing an alteration in the physicochemical properties of the mucus layer. The intestinal mucus prevents the invasion of pathogens to the epithelium by its antibacterial properties (e.g. β-defensin, lysozyme, avidin and IgA) and creates a physical barrier with the ability to protect the epithelium from pathogens. Mucosal barrier is the first line of innate defense in the gastrointestinal tract. This barrier has a selective permeability that allows small particles and nutrients passing through. The structural components and functional properties of mucins have been reviewed extensively in humans and rodents, but it seems to be neglected in poultry. This review discusses the impact of age on development of goblet cells and their mucus production with relevance for the functional characteristics of mucus layer and its protective mechanism in the chicken’s intestine. Dietary factors directly and indirectly (through modification of the gut bacteria and their metabolic activities) affect goblet cell proliferation and differentiation and can be used to manipulate mucosal integrity and dynamic. However, the mode of action and mechanisms behind these effects need to be studied further. As mucins resist to digestion processes, the sloughed mucins can be utilized by bacteria in the lower part of the gut and are considered as endogenous loss of protein and energy to animal. Hydrothermal processing of poultry feed may reduce this loss by reduction in mucus shedding into the lumen. Given the significance of this loss and the lack of precise data, this matter needs to be carefully investigated in the future and the nutritional strategies reducing this loss have to be defined better.
Journal Article
Enhancing Stability and Mucoadhesive Properties of Chitosan Nanoparticles by Surface Modification with Sodium Alginate and Polyethylene Glycol for Potential Oral Mucosa Vaccine Delivery
2022
Background: The present study aimed to fabricate surface-modified chitosan nanoparticles with two mucoadhesive polymers (sodium alginate and polyethylene glycol) to optimize their protein encapsulation efficiency, improve their mucoadhesion properties, and increase their stability in biological fluids. Method: Ionotropic gelation was employed to formulate chitosan nanoparticles and surface modification was performed at five different concentrations (0.05, 0.1, 0.2, 0.3, 0.4% w/v) of sodium alginate (ALG) and polyethylene glycol (PEG), with ovalbumin (OVA) used as a model protein antigen. The functional characteristics were examined by dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM). Stability was examined in the presence of simulated gastric and intestinal fluids, while mucoadhesive properties were evaluated by in vitro mucin binding and ex vivo adhesion on pig oral mucosa tissue. The impact of the formulation and dissolution process on the OVA structure was investigated by sodium dodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD). Results: The nanoparticles showed a uniform spherical morphology with a maximum protein encapsulation efficiency of 81%, size after OVA loading of between 200 and 400 nm and zeta potential from 10 to 29 mV. An in vitro drug release study suggested successful nanoparticle surface modification by ALG and PEG, showing gastric fluid stability (4 h) and a 96 h sustained OVA release in intestinal fluid, with the nanoparticles maintaining their conformational stability (SDS-PAGE and CD analyses) after release in the intestinal fluid. An in vitro mucin binding study indicated a significant increase in mucin binding from 41 to 63% in ALG-modified nanoparticles and a 27–49% increase in PEG-modified nanoparticles. The ex vivo mucoadhesion showed that the powdered particles adhered to the pig oral mucosa. Conclusion: The ALG and PEG surface modification of chitosan nanoparticles improved the particle stability in both simulated gastric and intestinal fluids and improved the mucoadhesive properties, therefore constituting a potential nanocarrier platform for mucosal protein vaccine delivery.
Journal Article