Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
259 result(s) for "Mucosa integrity"
Sort by:
Embryonic stem cell-derived mesenchymal stem cells promote colon epithelial integrity and regeneration by elevating circulating IGF-1 in colitis mice
Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating inflammatory bowel disease (IBD) due to their immunomodulatory and trophic functions. However, their efficacy is influenced by tissue origin, donator condition, isolation, and expansion methods. Here, we generated phenotypically uniform MSCs from human embryonic stem cells (T-MSCs) and explored the molecular mechanisms involved in promoting mucosal integrity and regeneration in colitis mice. T-MSCs were injected intravenously into mice with dextran sulfate sodium (DSS)-induced colitis, and the distribution and therapeutic efficacy were evaluated. We performed serum cytokine antibody microarrays to screen potentially effective proteins and examined the therapeutic effect of insulin-like growth factor-1 (IGF-1). Colon epithelial regeneration potential was evaluated, and RNA sequencing was employed to determine the underlying molecular mechanisms. Finally, IGF-1 stimulation was performed to assess its effect on cell functions and organoid growth. Intravenous administration of T-MSCs alleviated colitis in both acute and chronic DSS mouse models. Labeled T-MSCs were mainly distributed in the lungs, liver, and spleen after systemic infusion. The antibody array analysis of serum cytokines indicated that the IGF-1 level was increased in the treatment group, and serum ELISA further confirmed its elevation in the regeneration stage. Intraperitoneal injection of IGF-1 receptor inhibitors abrogated the anti-inflammatory activity of T-MSCs. The colonic epithelium of the treatment group showed greater regenerative potency than the controls and the IGF1R-PI3K-AKT pathway was up-regulated. RNA sequencing showed that T-MSC treatment contributed to colonic cell integrity and promoted xenobiotic metabolism. IGF-1 stimulation promoted the growth and proliferation of colon cells and organoids. Intravenous infusion of T-MSCs alleviated colitis in mice by elevating the circulating IGF-1 level. Increased IGF-1 maintained the integrity of epithelial cells and contributed to their repair and regeneration. Our study has identified T- MSCs as a potential cell resource for IBD treatment.
Weissella confusa F213 ameliorated inflammation and maintained intestinal mucosa integrity in chemically induced colitis rats
Objective This study was performed to investigate the potential effects of Weissella confusa F213 (WCF213) on chemically-induced colitis rats. Twelve male Wistar rats were divided into three groups: T1 (saline sterile), T2 (2.5% dextran sulfate sodium (DSS)- for 7 days), and T3 (WCF213 for 14 days, continued with 2.5% DSS for 7 days). The disease activity index (DAI) was monitored. After sacrificing the rats, the colon was collected for length measurement, local TNF-α level, HE staining for histology, and ZO-1 expression by using immunohistochemistry. Results WCF213 administration prevented weight loss and haematochezia, maintained average colon length and alleviated the clinical symptom of colitis, such as diarrhoea, albeit statistically non-significant ( p  < 0.05) compared with the T2 group. The histopathology of WCF213-treated colitis rats showed better architecture and less inflammatory cell infiltration into colon tissue. WCF213 significantly maintained the expression of ZO-1 in the mucosa ( p  < 0.001) and markedly reduced mucosal TNF-α concentration ( p  < 0.001) compared with the DSS group. Hence, these findings suggested that WCF213 attenuated clinical symptoms and inflammation and maintained mucosal integrity in DSS-induced colitis in vivo.
Esophageal secondary peristalsis following acid infusion and chemical clearance correlate with mucosal integrity and acid sensitivity in GERD patients
Background: Acid sensitivity can be altered in patients with gastroesophageal reflux disease (GERD). Secondary peristalsis helps clear gastro-esophageal refluxate and residual ingested food bolus. Objectives: The aim of this study was to investigate the associations among acid sensitivity, esophageal mucosal integrity, chemical clearance, and secondary peristalsis before and after esophageal acid infusion. Design: This was an investigator-initiated, prospective, cross-sectional study. Methods: Adult reflux patients underwent high resolution manometry and 24 h impedance-pH monitoring off acid suppression to identify GERD phenotypes, including non-erosive reflux disease (NERD), reflux hypersensitivity (RH), and functional heartburn (FH). Secondary peristalsis was assessed using five rapid 20 mL air injections into the esophagus before and after infusion of hydrochloric acid (0.1 N) into the mid-esophagus. Conventional acid infusion parameters recorded included lag time, intensity rating, and sensitivity score. Chemical clearance was evaluated using the post-reflux swallow-induced peristaltic wave (PSPW), and mucosal integrity was assessed by the mean nocturnal baseline impedance (MNBI) derived from impedance-pH monitoring. Results: A total of 88 patients (age 21–64 years, 62.5% women) completed the study including 12 patients with NERD, 45 with RH, and 31 with FH. There was no significant difference in acid infusion parameters between patients with NERD, RH, and FH. Upon acid infusion, patients who exhibited successful secondary peristalsis had longer lag time, higher MNBI, and shorter bolus contact time than those without secondary peristalsis. Meanwhile, patients with intact PSPW demonstrated significantly higher intensity ratings in response to acid perfusion and higher MNBI than those with impaired PSPW. The lag time correlated positively with MNBI (r = 0.285; p = 0.007). Conclusion: In conclusion, the protective effect of esophageal secondary peristalsis and chemical clearance on esophageal mucosal integrity was demonstrated. Concerning acid sensitivity, longer lag time in patients with intact secondary peristalsis may be attributed to better esophageal mucosal integrity, while stronger intensity ratings may have a greater tendency to induce PSPW and protect esophageal mucosal integrity.
Neutral detergent-soluble fiber improves gut barrier function in twenty-five-day-old weaned rabbits
The effect of neutral detergent-soluble fiber level on gut barrier function and intestinal microbiota was examined in weaned rabbits. A control diet (AH) containing 103 g of neutral detergent-soluble fiber/ kg of DM included alfalfa hay as main source of fiber. Another diet (B-AP) was formulated by replacing half of the alfalfa hay with a mixture of beet and apple pulp resulting in 131 g of soluble fiber/kg of DM. A third diet (OH) was obtained by substituting half of the alfalfa hay with a mix of oat hulls and a soybean protein concentrate and contained 79 g of soluble fiber/kg of DM. Rabbits weaned at 25 d and slaughtered at 35 d were used to determine ileal digestibility, jejunal morphology, sucrase activity, lamina propria lymphocytes, and intestinal microbiota. Suckling 35-d-old rabbits were used to assess mucosa morphology. Mortality (from weaning to 63 d of age) was also determined. Villous height of the jejunal mucosa increased with soluble fiber (P = 0.001). Rabbits fed with the greatest level of soluble fiber (BA-P diet) showed the highest villous height/ crypt depth ratio (8.14; P = 0.001), sucrase specific activity (8,671 μmol of glucose/g of protein; P = 0.019), and the greatest ileal starch digestibility (96.8%; P = 0.002). The opposite effects were observed in rabbits fed decreased levels of soluble fiber (AH and OH diets; 4.70, 5,848 μmol of glucose/g of protein, as average, respectively). The lowest ileal starch digestibility was detected for animals fed OH diet (93.2%). Suckling rabbits of the same age showed a lower villous height/crypt depth ratio (6.70) compared with the B-AP diet group, but this ratio was higher than the AH or OH diet groups. Lower levels of soluble fiber tended (P = 0.074) to increase the cellular immune response (CD8+ lymphocytes). Diet affected IL-2 production (CD25+, P = 0.029; CD5+CD25+, P = 0.057), with no clear relationship between soluble fiber and IL-2. The intestinal microbiota biodiversity was not affected by diets (P >= 0.38). Rabbits fed the B-AP and AH diets had a reduced cecal frequency of detection compatible with Campylobacter spp. (20.3 vs. 37.8, P = 0.074), and Clostridium perfringens (4.3 vs. 17.6%, P = 0.047), compared with the OH diet group. Moreover, the mortality rates decreased from 14.4 (OH diet) to 5.1% (B-AP diet) with the increased presence of soluble fiber in the diet. In conclusion, increased levels of dietary soluble fiber improve mucosal integrity and functionality.
16 Nutrition
Nutritional management is medical treatment. Nutrition should be considered equal to all other medical managements, for its proper use can optimize nervous system recovery and prevent further injury. Once the brain is injured, even to the point of coma, brain metabolism is increased and should be treated as early as possible. Withholding nutrition is dangerous, leading to decreased gastrointestinal mucosa integrity, depression of the immune response, and other abnormalities, which in turn leads to increased morbidity and mortality. The amount of nutrition, the type of nutrition, the additives to the nutrition, and the method of delivery of the nutrition are specific for patients with central nervous system injuries. VoR
Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis
Gut microbial dysbiosis is associated with the development of autoimmune disease, but the mechanisms by which microbial dysbiosis affects the transition from asymptomatic autoimmunity to inflammatory disease are incompletely characterized. Here, we identify intestinal barrier integrity as an important checkpoint in translating autoimmunity to inflammation. Zonulin family peptide (zonulin), a potent regulator for intestinal tight junctions, is highly expressed in autoimmune mice and humans and can be used to predict transition from autoimmunity to inflammatory arthritis. Increased serum zonulin levels are accompanied by a leaky intestinal barrier, dysbiosis and inflammation. Restoration of the intestinal barrier in the pre-phase of arthritis using butyrate or a cannabinoid type 1 receptor agonist inhibits the development of arthritis. Moreover, treatment with the zonulin antagonist larazotide acetate, which specifically increases intestinal barrier integrity, effectively reduces arthritis onset. These data identify a preventive approach for the onset of autoimmune disease by specifically targeting impaired intestinal barrier function. Intestinal dysbiosis is associated with an ever-growing list of autoimmune diseases. Here the authors show that both mice and humans with autoimmune arthritis can have dysbiosis and barrier leakiness prior to major signs of inflammatory arthritis, and treatment of mice with a zonulin antagonist can limit collagen-induced arthritis.
Euphorbium compositum SN improves the innate defenses of the airway mucosal barrier network during rhinovirus infection
Background Rhinoviruses (RV) are the major cause of common colds in healthy individuals and are associated with acute exacerbations in patients with chronic lung diseases. Yet, no vaccines or effective treatment against RV are available. This study investigated the effect of Euphorbium compositum SN (ECSN6), a multicomponent, multitarget medication made from natural ingredients, on the mucosal barrier network during RV infection. Methods Mucociliary-differentiated airway epithelial cell cultures were infected with RV or sham, and treated with 20% ECSN6 or placebo twice daily. Barrier integrity was assessed by measuring transepithelial resistance (TER), permeability to inulin, and expression and localization of intercellular junctions proteins (IJ). Ciliary beat frequency (CBF), expression of pro-inflammatory cytokines, antiviral interferons and mucins, and viral load were also measured. C57BL/6 mice were infected intranasally with RV or sham and treated with 40% ECSN6 or placebo twice daily. Inflammation of sinunasal mucosa, localization of E-cadherin, viral load and mucin gene expression were determined. Results ECSN6-treated, uninfected cell cultures showed small, but significant increase in TER over placebo, which was associated with enhanced localization of E-cadherin and ZO-1 to IJ. In RV-infected cultures, treatment with ECSN6, but not placebo prevented RV-induced (1) reduction in TER, (2) dissociation of E-cadherin and ZO-1 from the IJ, (3) mucin expression, and (4) CBF attenuation. ECSN6 also decreased RV-stimulated expression of pro-inflammatory cytokines and permeability to inulin. Although ECSN6 significantly increased the expression of some antiviral type I and type III interferons, it did not alter viral load. In vivo, ECSN6 reduced RV-A1-induced moderate inflammation of nasal mucosa, beneficially affected RV-A1-induced cytokine responses and Muc5ac mRNA expression and prevented RV-caused dissociation of E-cadherin from the IJ of nasal mucosa without an effect on viral clearance. Conclusions ECSN6 prevents RV-induced airway mucosal barrier dysfunction and improves the immunological and mucociliary barrier function. ECSN6 may maintain integrity of barrier function by promoting localization of tight and adherence junction proteins to the IJ. This in turn may lead to the observed decrease in RV-induced pro-inflammatory responses in vitro. By improving the innate defenses of the airway mucosal barrier network, ECSN6 may alleviate respiratory symptoms caused by RV infections.
Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection
Metabolic syndrome often accompanies obesity and hyperglycemia and is associated with a breakdown in the integrity of the intestinal barrier and increased risk of systemic infection. Thaiss et al. found that mice with systemic infection of a Salmonella analog, Citrobacter rodentium , also exhibited hyperglycemia. Deletion of the glucose transporter GLUT2 altered sensitivity to chemically induced epithelial permeability and protected mice from pathogen invasion. The authors also found a correlation in humans between glycated hemoglobin (an indicator of hyperglycemia) and serum levels of pathogen recognition receptor ligands. Science , this issue p. 1376 High blood sugar levels cause epithelial reprogramming, compromising gut barrier integrity and increasing susceptibility to pathogens. Obesity, diabetes, and related manifestations are associated with an enhanced, but poorly understood, risk for mucosal infection and systemic inflammation. Here, we show in mouse models of obesity and diabetes that hyperglycemia drives intestinal barrier permeability, through GLUT2-dependent transcriptional reprogramming of intestinal epithelial cells and alteration of tight and adherence junction integrity. Consequently, hyperglycemia-mediated barrier disruption leads to systemic influx of microbial products and enhanced dissemination of enteric infection. Treatment of hyperglycemia, intestinal epithelial–specific GLUT2 deletion, or inhibition of glucose metabolism restores barrier function and bacterial containment. In humans, systemic influx of intestinal microbiome products correlates with individualized glycemic control, indicated by glycated hemoglobin levels. Together, our results mechanistically link hyperglycemia and intestinal barrier function with systemic infectious and inflammatory consequences of obesity and diabetes.
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes
Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Development and Functional Properties of Intestinal Mucus Layer in Poultry
Intestinal mucus plays important roles in protecting the epithelial surfaces against pathogens, supporting the colonization with commensal bacteria, maintaining an appropriate environment for digestion, as well as facilitating nutrient transport from the lumen to the underlying epithelium. The mucus layer in the poultry gut is produced and preserved by mucin-secreting goblet cells that rapidly develop and mature after hatch as a response to external stimuli including environmental factors, intestinal microbiota as well as dietary factors. The ontogenetic development of goblet cells affects the mucin composition and secretion, causing an alteration in the physicochemical properties of the mucus layer. The intestinal mucus prevents the invasion of pathogens to the epithelium by its antibacterial properties (e.g. β-defensin, lysozyme, avidin and IgA) and creates a physical barrier with the ability to protect the epithelium from pathogens. Mucosal barrier is the first line of innate defense in the gastrointestinal tract. This barrier has a selective permeability that allows small particles and nutrients passing through. The structural components and functional properties of mucins have been reviewed extensively in humans and rodents, but it seems to be neglected in poultry. This review discusses the impact of age on development of goblet cells and their mucus production with relevance for the functional characteristics of mucus layer and its protective mechanism in the chicken’s intestine. Dietary factors directly and indirectly (through modification of the gut bacteria and their metabolic activities) affect goblet cell proliferation and differentiation and can be used to manipulate mucosal integrity and dynamic. However, the mode of action and mechanisms behind these effects need to be studied further. As mucins resist to digestion processes, the sloughed mucins can be utilized by bacteria in the lower part of the gut and are considered as endogenous loss of protein and energy to animal. Hydrothermal processing of poultry feed may reduce this loss by reduction in mucus shedding into the lumen. Given the significance of this loss and the lack of precise data, this matter needs to be carefully investigated in the future and the nutritional strategies reducing this loss have to be defined better.