Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
655
result(s) for
"Mucositis - pathology"
Sort by:
Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation
by
Schmidt-Hohagen, Kerstin
,
Hofmann, Julia D.
,
Lesker, Till R.
in
Acetic acid
,
Adaptive Immunity
,
Allergology
2021
Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.
Journal Article
The pathogenesis of mucositis: updated perspectives and emerging targets
2019
Mucositis research and treatment are a rapidly evolving field providing constant new avenues of research and potential therapies. The MASCC/ISOO Mucositis Study Group regularly assesses available literature relating to pathogenesis, mechanisms, and novel therapeutic approaches and distils this to summary perspectives and recommendations. Reviewers assessed 164 articles published between January 2011 and June 2016 to identify progress made since the last review and highlight new targets for further investigation. Findings were organized into sections including established and emerging mediators of toxicity, potential insights from technological advances in mucositis research, and perspective. Research momentum is accelerating for mucositis pathogenesis, and with this has come utilization of new models and interventions that target specific mechanisms of injury. Technological advances have the potential to revolutionize the field of mucositis research, although focused effort is needed to move rationally targeted interventions to the clinical setting.
Journal Article
Role of Rutin in 5-Fluorouracil-Induced Intestinal Mucositis: Prevention of Histological Damage and Reduction of Inflammation and Oxidative Stress
by
Teixeira, Claudio Silva
,
Barreto, João Erivan Façanha
,
de Castro Brito, Gerly Anne
in
Animals
,
antimetabolites
,
Cancer therapies
2020
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis.
Journal Article
The Anthocyanidins Malvidin and Cyanidin Alleviate Irinotecan-Triggered Intestinal Mucositis by Modulating Oxidative Stress and Cytokine Release
by
Jorge, Giulia Izzo
,
Rodrigues, Vinícius Peixoto
,
Emílio-Silva, Maycon Tavares
in
Animals
,
Anthocyanins - pharmacology
,
Anthocyanins - therapeutic use
2025
Chemotherapy with irinotecan (CPT-11) induces intestinal mucositis via oxidative stress and NF-κB-driven cytokine amplification. We investigated the protective effects of the anthocyanidins cyanidin and malvidin (5 mg/kg) in a murine CPT-11 mucositis model. Both compounds increased duodenal glutathione level (GSH) and reduced lipid peroxidation (MDA), with distinct antioxidant profiles: malvidin enhanced catalase (CAT) activity, while cyanidin elevated superoxide dismutase (SOD). In the colon, cyanidin lowered MDA, whereas other oxidative and inflammatory markers remained largely unchanged. Malvidin significantly reduced IL-1β and IL-17 in both intestinal segments; cyanidin selectively decreased IL-6 in the colon, and this reduction was also observed for malvidin treatment. Gene expression analysis revealed broad transcriptional suppression in the duodenum for both compounds (Nrf2, NF-κB, TNF-α, IL-1β, IL-6, IL-17, IL-10), while colonic effects were more limited (suppression in IL-6 for both compounds). Despite these biochemical and transcriptional improvements—which were more pronounced with malvidin—neither compound prevented CPT-11-induced weight loss or colonic histopathology, indicating that redox and cytokine modulation alone are insufficient to restore mucosal integrity. Overall, malvidin demonstrated a more significant modulation in the antioxidant response in the duodenum, with anti-inflammatory activity in both segments, while cyanidin showed targeted modulation of oxidative stress. These findings position both anthocyanidins as complementary agents with distinct mechanistic profiles, warranting further investigation into dose–response, pharmacokinetics, NRF2 protein dynamics, and barrier-repair strategies. Early-phase clinical evaluation is recommended to assess their potential as adjunctive therapies for chemotherapy-induced intestinal mucositis.
Journal Article
The progression of doxorubicin-induced intestinal mucositis in rats
by
Salomonsson, A.
,
Dahlgren, D.
,
Luna-Marco, C.
in
Animals
,
Antineoplastic Agents - therapeutic use
,
Apoptosis
2023
Chemotherapy-induced intestinal mucositis is a severe side effect contributing to reduced quality of life and premature death in cancer patients. Despite a high incidence, a thorough mechanistic understanding of its pathophysiology and effective supportive therapies are lacking. The main objective of this rat study was to determine how 10 mg/kg doxorubicin, a common chemotherapeutic, affected jejunal function and morphology over time (6, 24, 72, or 168 h). The secondary objective was to determine if the type of dosing administration (intraperitoneal or intravenous) affected the severity of mucositis or plasma exposure of the doxorubicin. Morphology, proliferation and apoptosis, and jejunal permeability of mannitol were examined using histology, immunohistochemistry, and single-pass intestinal perfusion, respectively. Villus height was reduced by 40% after 72 h, preceded at 24 h by a 75% decrease in proliferation and a sixfold increase in apoptosis. Villus height recovered completely after 168 h. Mucosal permeability of mannitol decreased after 6, 24, and 168 h. There were no differences in intestinal injury or plasma exposure after intraperitoneal or intravenous doxorubicin dosing. This study provides an insight into the progression of chemotherapy-induced intestinal mucositis and associated cellular mucosal processes. Knowledge from this
in vivo
rat model can facilitate development of preventive and supportive therapies for cancer patients.
Journal Article
Melatonin mitigates chemotherapy-induced small intestinal atrophy in rats and reduces cytotoxicity in murine intestinal organoids
2024
Cancer continues to pose a significant global health challenge, with gastrointestinal (GI) cancers among the most prevalent and deadly forms. These cancers often lead to high mortality rates and demand the use of potent cytotoxic chemotherapeutics. For example, 5-fluorouracil (5-FU) forms the backbone of chemotherapy regimens for various GI cancers, including colorectal cancer. While these chemotherapeutics efficiently kill cancer cells, they frequently cause off-target effects such as chemotherapy-induced mucositis (CIM), characterized by debilitating symptoms like pain, nausea, and diarrhoea, necessitating medical intervention. In this study, we elucidated the potential of melatonin and misoprostol to reduce 5-FU-induced small intestinal mucositis. Morphological and cellular changes in the jejunum, along with colonic faecal water content were quantified in rats as markers for CIM. Additionally, the effects of melatonin were investigated in vitro on 5-FU treated murine intestinal organoids. The results showed that melatonin prevented villus atrophy in the rat jejunal mucosa and upheld cell viability in murine intestinal organoids. In contrast, misoprostol alone or in combination with melatonin did not significantly affect CIM caused by 5-FU. These in vivo and in vitro experiments provided promising insights that melatonin may be used as a preventive and/or adjuvant combination therapy to prevent and reduce CIM, holding the potential to enhance cancer treatment outcomes and improve patient quality-of-life.
Journal Article
Oral administration of cystine and theanine attenuates 5-fluorouracil-induced intestinal mucositis and diarrhea by suppressing both glutathione level decrease and ROS production in the small intestine of mucositis mouse model
by
Kurihara, Shigekazu
,
Nishikawa, Sachiko
,
Yoneda, Junya
in
5-Fluorouracil
,
Adverse events
,
Amino acids
2021
Background
Chemotherapy is frequently used in cancer treatment; however, it may cause adverse events, which must be managed. Reactive oxygen species (ROS) have been reported to be involved in the induction of intestinal mucositis and diarrhea, which are common side effects of treatment with fluoropyrimidine 5-fluorouracil (5-FU). Our previous studies have shown that oral administration of cystine and theanine (CT) increases glutathione (GSH) production in vivo. In the present study, we hypothesized that CT might inhibit oxidative stress, including the overproduction of ROS, and attenuate 5-FU-induced mucositis and diarrhea.
Methods
We investigated the inhibitory effect of CT administration on mucositis and diarrhea, as well as its mechanism, using a mouse model of 5-FU-induced intestinal mucositis.
Results
CT administration suppressed 5-FU-induced diarrhea and weight loss in the studied mice. After 5-FU administration, the GSH level and the GSH/GSSG ratio in the small intestine mucosal tissue decreased compared to normal control group; but CT administration improved the GSH/GSSG ratio to normal control levels. 5-FU induced ROS production in the basal region of the crypt of the small intestine mucosal tissue, which was inhibited by CT. CT did not affect the antitumor effect of 5-FU.
Conclusions
CT administration suppressed intestinal mucositis and diarrhea in a mouse model. This finding might be associated with the antioxidant characteristics of CT, including the improved rate of GSH redox and the reduced rate of ROS production in the small intestine mucosal tissue. CT might be a suitable candidate for the treatment of gastrointestinal mucositis associated with chemotherapy.
Journal Article
From Pathogenesis to Intervention: The Importance of the Microbiome in Oral Mucositis
by
Al-Qadami, Ghanyah H.
,
Wardill, Hannah R.
,
Fregnani, Eduardo R.
in
Antimicrobial agents
,
Bacteria
,
Cancer
2023
Oral mucositis (OM) is a common and impactful toxicity of standard cancer therapy, affecting up to 80% of patients. Its aetiology centres on the initial destruction of epithelial cells and the increase in inflammatory signals. These changes in the oral mucosa create a hostile environment for resident microbes, with oral infections co-occurring with OM, especially at sites of ulceration. Increasing evidence suggests that oral microbiome changes occur beyond opportunistic infection, with a growing appreciation for the potential role of the microbiome in OM development and severity. This review collects the latest articles indexed in the PubMed electronic database which analyse the bacterial shift through 16S rRNA gene sequencing methodology in cancer patients under treatment with oral mucositis. The aims are to assess whether changes in the oral and gut microbiome causally contribute to oral mucositis or if they are simply a consequence of the mucosal injury. Further, we explore the emerging role of a patient’s microbial fingerprint in OM development and prediction. The maintenance of resident bacteria via microbial target therapy is under constant improvement and should be considered in the OM treatment.
Journal Article
Therapeutic effect and mechanism of Daikenchuto in a model of methotrexate-induced acute small intestinal mucositis
2023
Daikenchuto (DKT) has positive therapeutic effects on improving various gastrointestinal disorders. The present study investigated whether or not DKT has a potential therapeutic effect on chemotherapy-induced acute small intestinal mucositis (CIM) in a rat model.
Intraperitoneal injection of 10 mg/kg methotrexate (MTX) every 3 days for a total of 3 doses was used for induction of CIM in a rat model. The MTX and DKT-MTX groups were injected with MTX as above from the first day, and the DKT-MTX and DKT groups were administered 2.7% DKT via the diet at the same time. The rats were euthanized on day 15.
The DKT-MTX group showed an improvement in the body weight and conditions of gastrointestinal disorders as well as increased levels of diamine oxidase in plasma and in the small intestinal villi. The pathology results showed that small intestinal mucosal injury in the DKT-MTX group was less severe than that in the MTX group. Immunohistochemistry for myeloperoxidase and malondialdehyde and quantitative real-time polymerase chain reaction (RT-qPCR) for TGF-β1 and HIF-1α showed that DKT attenuated peroxidative damage. The crypts in the DKT-MTX group contained more Ki-67-positive cells than MTX group. The zonula occluden-1 and claudin-3 results showed that DKT promoted repair of the mucosal barrier. RT-qPCR for the amino acid transporters EAAT3 and BO+AT also confirmed that DKT promoted mucosal repair and thus promoted nutrient absorption.
DKT protected against MTX-induced CIM in a rat model by reducing inflammation, stimulating cell proliferation, and stabilizing the mucosal barrier.
Journal Article
Bifidobacterium Infantis Ameliorates Chemotherapy-Induced Intestinal Mucositis Via Regulating T Cell Immunity in Colorectal Cancer Rats
by
Dong, Yan
,
Mi, Hui
,
Gao, Ping
in
5-fluorouracil
,
Animals
,
Antineoplastic Agents - therapeutic use
2017
Background/Aims: Intestinal mucositis (IM) is a commonly encountered side effect in cancer patients receiving chemotherapy. This study aimed to investigate the effect of Bifidobacterium infantis (B. infantis) in attenuating the severity of chemotherapy-induced intestinal mucositis by regulating the T cell subsets in rats with colorectal cancer (CRC). Methods: Thirty male Sprague-Dawley (SD) rats were injected dimethyl hydrazine (DMH) subcutaneously for 10 weeks, and then injected SW480 cells in rectal mucosa to create a CRC model, and the rats were randomly divided into three groups: Control group (saline + saline), Chemotherapy group (saline + 5-FU+Oxaliplatin), B. infantis group (B. infantis + 5-FU+Oxaliplatin). IM was evaluated based on diarrhea severity, intestinal villus height, crypt depth, pro-inflammatory cytokines (IL-6, IL-1β, TNF-α), T cell subsets (CD4 + IL17A + cells and CD4 + CD25 + Foxp3 + Tregs) and related cytokine profiles. Results: The results showed that the B. infantis group demonstrated a higher body weight (BW) and intestinal villus height and a deeper crypt depth compared to the Chemotherapy group. The level of IL-6, IL-1β and TNF-α which increased by chemotherapy, was lowered by B. infantis administration. Real time reverse transcription- polymerase chain reaction (RT-PCR) showed B. infantis reduced relative expression of Th17 and Th1 cells related cytokines, and increased relative expression of CD4 + CD25 + Foxp3 + Tregs related cytokines. Furthermore, Flow cytometry analysis showed B. infantis reduced CD4 + IL17A + cells and increased CD4 + CD25 + Foxp3 + Tregs in mesenteric lymph nodes (MLNs) compared to the Chemotherapy group. Conclusion: B. infantis effectively attenuates chemotherapy-induced intestinal mucositis by decreasing Th1 and Th17 response and increasing CD4 + CD25 + Foxp3 + Tregs response.
Journal Article