Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
34 result(s) for "Multidrug resistance related protein 1"
Sort by:
PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy
Background Nutrient deprivation, hypoxia, radiotherapy and chemotherapy induce endoplasmic reticulum (ER) stress, which activates the so-called unfolded protein response (UPR). Extensive and acute ER stress directs the UPR towards activation of death-triggering pathways. Cancer cells are selected to resist mild and prolonged ER stress by activating pro-survival UPR. We recently found that drug-resistant tumor cells are simultaneously resistant to ER stress-triggered cell death. It is not known if cancer cells adapted to ER stressing conditions acquire a chemoresistant phenotype. Methods To investigate this issue, we generated human cancer cells clones with acquired resistance to ER stress from ER stress-sensitive and chemosensitive cells. Results ER stress-resistant cells were cross-resistant to multiple chemotherapeutic drugs: such multidrug resistance (MDR) was due to the overexpression of the plasma-membrane transporter MDR related protein 1 (MRP1). Gene profiling analysis unveiled that cells with acquired resistance to ER stress and chemotherapy share higher expression of the UPR sensor protein kinase RNA-like endoplasmic reticulum kinase (PERK), which mediated the erythroid-derived 2-like 2 (Nrf2)-driven transcription of MRP1. Disrupting PERK/Nrf2 axis reversed at the same time resistance to ER stress and chemotherapy. The inducible silencing of PERK reduced tumor growth and restored chemosensitivity in resistant tumor xenografts. Conclusions Our work demonstrates for the first time that the adaptation to ER stress in cancer cells produces a MDR phenotype. The PERK/Nrf2/MRP1 axis is responsible for the resistance to ER stress and chemotherapy, and may represent a good therapeutic target in aggressive and resistant tumors.
The Evaluation of Multidrug Resistance-Related Protein 1 as a Prognostic Factor in the Pediatric B-cell Acute Lymphoblastic Leukemia: A Pilot Study
Objective: Acute lymphoblastic leukemia (ALL) is the most prevalent type of cancer in children. Minimal residual disease (MRD) is still the most important indicator of clinical results and relapse after chemotherapy. Multidrug resistance is the main obstacle to successful treatment. Multidrug resistance-related protein 1 (MRP1) may play a key role in throwing the chemical drug out of cells leading to therapy resistance. This study aims to detect MRP1 protein in the bone marrow cells of children with B-ALL and determine its value as a prognostic factor in comparison with other factors such as DNA index and MRD obtained by flow cytometric measurement. Methods: Bone marrow samples were obtained from children who are diagnosed as B-ALL (n=20) at day 0 (diagnosis) and 15 of therapy. Risk groups’ classification is based on discrimination of age and white cell count on day 0. The expressions of MRP1 levels and DNA index at diagnosis and MRD on the 15th day of treatment in the bone marrow were detected by using flow cytometry. The B-ALL blast cells were stained using anti-CD10, -CD19, -CD20, -CD34, -CD45 monoclonal antibodies. MRP1 content of cells was detected in an intracellular manner. Results: There was no statistically significant difference in MRP1 expression between risk groups and the other prognostic factor as Flow MRD and DNA index. Conclusion: The utilization of MRP1 as a predictive factor may not provide information on the B-ALL prognosis. Our results can help to better understand the nature of MRP1 in B-ALL patients.
Mechanisms of verapamil-enhanced chemosensitivity of gallbladder cancer cells to platinum drugs: Glutathione reduction and MRP1 downregulation
Gallbladder cancer (GBC) is highly malignant with a low response rate after chemotherapy and platinum drugs are currently prominent in the treatment of biliary tract cancers. Therefore, the development of novel strategies to enhance the sensitivity of GBC to platinum drugs is required. In the present study, we examined the effects of verapamil, a classic chemosensitizer whose reported mechanisms of action include inhibiting the transport function of P-glycoprotein (MDR1) or stimulating glutathione (GSH) transport by multidrug resistance-related protein 1 (MRP1), in combination with cisplatin (CDDP), carboplatin (CBP) or oxaliplatin on the GBC cell lines, SGC996 and GBC-SD. Our results demonstrated that the co-treatment with verapamil markedly enhanced the chemosensitivity of GBC cells in comparison with platinum drug treatment alone. The mechanisms involved included GSH reduction and MRP1 downregulation. Verapamil/CDDP co-treatment inhibited tumor xenograft growth via the downregulation of MRP1 expression. MRP1 was highly expressed in human GBC tissue compared to non-tumorous gallbladder tissue. Our data demonstrate that verapamil may be used as a safe chemosensitizer for platinum drugs in the treatment of GBC. It functions by ROS and ATP-binding cassette transporter-related mechanisms.
Immunohistochemical Expression of Multidrug Resistance Proteins as a Predictor of Poor Response to Chemotherapy and Prognosis in Patients with Nodal Diffuse Large B-Cell Lymphoma
Background/Aims: The aim of this study was to determine whether expression of P-glycoprotein (P-gp), multidrug-resistance-related protein 1 (MRP1), and lung resistance protein (LRP) was related to the response to induction chemotherapy and prognosis in untreated diffuse large B-cell lymphoma (DLBCL). Methods: We assessed immunohistochemical expression of P-gp, MRP1 and LRP, using formalin-fixed and paraffin-embedded specimens of lymph node in 41 patients with DLBCL. Association between expression of these three proteins and their impact on clinical outcome and prognosis was statistically evaluated. Results: P-gp was positive in 37% of subjects, MRP1 in 63%, and LRP in 68%. The complete remission rates achieved in the group expressing these multidrug resistance (MDR) proteins was significantly lower than in the group not expressing them (20 versus 58%; p = 0.025 in P-gp, 23 versus 80%; p < 0.001 in MRP1 and 32 versus 69%, p = 0.043 in LRP, respectively). Furthermore, the patients expressing LRP had a shorter overall survival rate than those that did not (median of 26 months versus median not reached; p = 0.013). Conclusions: These findings suggest that the three MDR proteins are important predictive factors for the clinical outcome and prognosis in patients with DLBCL.
Immunomodulatory Protein from Ganoderma microsporum Induces Pro-Death Autophagy through Akt-mTOR-p70S6K Pathway Inhibition in Multidrug Resistant Lung Cancer Cells
Chemoresistance in cancer therapy is an unfavorable prognostic factor in non-small cell lung cancer (NSCLC). Elevation of intracellular calcium level in multidrug resistant (MDR) sublines leads to sensitization of MDR sublines to cell death. We demonstrated that a fungal protein from Ganoderma microsporum, GMI, elevates the intracellular calcium level and reduces the growth of MDR subline via autophagy and apoptosis, regardless of p-glycoprotein (P-gp) overexpression, in mice xenograft tumors. In addition, we examined the roles of autophagy in the death of MDR A549 lung cancer sublines by GMI, thapsigargin (TG) and tunicamycin (TM) in vitro. Cytotoxicity of TG was inhibited by overexpressed P-gp. However, TM-induced death of MDR sublines was independent of P-gp level. Combinations of TG and TM with either docetaxel or vincristine showed no additional cytotoxic effects on MDR sublines. TG- and TM-mediated apoptosis of MDR sublines was demonstrated on Annexin-V assay and Western blot and repressed by pan-caspase inhibitor (Z-VAD-FMK). Treatment of MDR sublines with TG and TM also augmented autophagy with accumulation of LC3-II proteins, breakdown of p62 and formation of acidic vesicular organelles (AVOs). Inhibition of ATG5 by shRNA silencing significantly reduced autophagy and cell death but not apoptosis following TG or TM treatment. GMI treatment inhibited the phosphorylation of Akt/S473 and p70S6K/T389. Interestingly, the phosphorylation of ERK was not associated with GMI-induced autophagy. We conclude that autophagy plays a pro-death role in acquired MDR and upregulation of autophagy by GMI via Akt/mTOR inhibition provides a potential strategy for overcoming MDR in the treatment of lung cancers.
Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT
The transcription factor twist family bHLH transcription factor 1 (TWIST), which is a member of the basic helix-loop-helix class of proteins, is known to induce epithelial-mesenchymal transition (EMT) and promote cancer metastasis. TWIST has previously been reported to be associated with multidrug resistance (MDR), since its depletion increases drug sensitivity. Although these previous studies have established a strong association between EMT and MDR, the molecular mechanism remains obscure. The present study demonstrated that TWIST protein expression was elevated in liver cancer, and was positively correlated with multidrug resistance protein 1 (MDR1) expression. Conversely, MDR1 was negatively correlated with E-cadherin expression in liver cancer samples. In addition, the present study indicated that doxorubicin-resistant HepG2 (R-HepG2) cells acquired an EMT phenotype. TWIST was also more highly expressed in R-HepG2 cells compared with in parental HepG2 cells. Knockdown of TWIST increased the sensitivity of R-HepG2 cells to 5-fluroracil, cisplatin and doxorubicin through a reduction in MDR1 expression and drug efflux ability. Furthermore, knockdown of TWIST in R-HepG2 cells inhibited the migratory ability of cells and suppressed the EMT phenotype. These findings demonstrated that targeting TWIST may be considered a novel strategy to overcome drug resistance in liver cancer.
Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes
Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes. Acinetobacter baumannii is generally considered an opportunistic pathogen. Here, Di Venanzio et al. develop a mouse model of catheter-associated urinary tract infection and show that a plasmid confers niche specificity to an A. baumannii urinary isolate by regulating the expression of chromosomal genes.
Glucocorticoids modulate multidrug resistance transporters in the first trimester human placenta
The placental multidrug transporters, P‐glycoprotein (P‐gp, encoded by ABCB1) and breast cancer resistance protein (BCRP, ABCG2) protect the foetus from exposure to maternally derived glucocorticoids, toxins and xenobiotics. During pregnancy, maternal glucocorticoid levels can be elevated by stress or exogenous administration. We hypothesized that glucocorticoids modulate the expression of ABCB1/P‐gp and ABCG2/BCRP in the first trimester human placenta. Our objective was to examine whether dexamethasone (DEX) or cortisol modulate first trimester placental expression of multidrug transporters and determine whether cytotrophoblasts or the syncytiotrophoblast are/is responsible for mediating these effects. Three models were examined: (i) an ex‐vivo model of placental villous explants (7‐10 weeks), (ii) a model of isolated first trimester syncytiotrophoblast and cytotrophoblast cells and (iii) the BeWo immortalized trophoblast cell line model. These cells/tissues were treated with DEX or cortisol for 24 hour to 72 hour. In first trimester placental explants, DEX (48 hour) increased ABCB1 (P < .001) and ABCG2 (P < .05) mRNA levels, whereas cortisol (48 hour) only increased ABCB1 mRNA levels (P < .01). Dexamethasone (P < .05) and cortisol (P < .01) increased BCRP but did not affect P‐gp protein levels. Breast cancer resistance protein expression was primarily confined to syncytiotrophoblasts. BeWo cells, when syncytialized with forskolin, increased expression of BCRP protein, and this was further augmented by DEX (P < .05). Our data suggest that the protective barrier provided by BCRP increases as cytotrophoblasts fuse to form the syncytiotrophoblast. Increase in glucocorticoid levels during the first trimester may reduce embryo/foetal exposure to clinically relevant BCRP substrates, because of an increase in placental BCRP.
Secreted Frizzled-Related Protein 4 Inhibits Glioma Stem-Like Cells by Reversing Epithelial to Mesenchymal Transition, Inducing Apoptosis and Decreasing Cancer Stem Cell Properties
The Wnt pathway is integrally involved in regulating self-renewal, proliferation, and maintenance of cancer stem cells (CSCs). We explored the effect of the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), in modulating epithelial to mesenchymal transition (EMT) in CSCs from human glioblastoma cells lines, U87 and U373. sFRP4 chemo-sensitized CSC-enriched cells to the most commonly used anti-glioblastoma drug, temozolomide (TMZ), by the reversal of EMT. Cell movement, colony formation, and invasion in vitro were suppressed by sFRP4+TMZ treatment, which correlated with the switch of expression of markers from mesenchymal (Twist, Snail, N-cadherin) to epithelial (E-cadherin). sFRP4 treatment elicited activation of the Wnt-Ca2(+) pathway, which antagonizes the Wnt/ß-catenin pathway. Significantly, the chemo-sensitization effect of sFRP4 was correlated with the reduction in the expression of drug resistance markers ABCG2, ABCC2, and ABCC4. The efficacy of sFRP4+TMZ treatment was demonstrated in vivo using nude mice, which showed minimum tumor engraftment using CSCs pretreated with sFRP4+TMZ. These studies indicate that sFRP4 treatment would help to improve response to commonly used chemotherapeutics in gliomas by modulating EMT via the Wnt/ß-catenin pathway. These findings could be exploited for designing better targeted strategies to improve chemo-response and eventually eliminate glioblastoma CSCs.