Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
174 result(s) for "Multinomial simulations"
Sort by:
Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence
BACKGROUND: Understanding wildlife disease ecology is becoming an urgent need due to the continuous emergence and spread of several wildlife zoonotic diseases. West Nile Virus (WNV) is the most widespread arthropod-borne virus in the world, and in recent decades there has been an increase both in geographic range, and in the frequency of symptomatic infections in humans and wildlife. The principal vector for WNV in Europe is the common house Culex pipiens mosquito, which feeds on a wide variety of vertebrate host species. Variation in mosquito feeding preference has been described as one of the most influential parameters driving intensity and timing of WNV infection in the United States, but feeding preferences for this species have been little studied in Europe. METHODS: Here, we estimated feeding preference for wild Cx. pipiens in northern Italy, using molecular analysis to identify the origin of blood meals, and avian census to control host abundance variations. Additionally, we used host bird odour extracts to test experimentally mosquito preferences in the absence of environmental variations. RESULTS: For the first time, we demonstrate a clear feeding preference for the common blackbird (Turdus merula), both for wild collected specimens and in the lab, suggesting a potential important role for this species in the WNV epidemiology in Europe. A seasonal decrease in abundance of blackbirds is associated with increased feeding on Eurasian magpies (Pica pica), and this may be linked to seasonal emergence of WNV in humans. Feeding preferences on blackbirds are more marked in rural areas, while preference for magpies is higher in peridomestic areas. Other species, such as the house sparrow (Passer domesticus) appear to be selected by mosquitoes opportunistically in relation to its abundance. CONCLUSIONS: Our findings provide new insights into the ecology of Cx. pipiens in Europe and may give useful indications in terms of implementing targeted WNV surveillance plans. However, a clearer understanding of spatio-temporal variations of Cx. pipiens feeding preferences, and targeted studies on reservoir competence for WNV for these species are therefore now urgently needed as this is essential to describe disease dynamics and quantify virus transmission risk.
Analysis and Compensation About Temperature Influence to Optical-Fiber Gyro Zero Bias
Compared to other gyro the dynamic performance of optical-fiber gyro was better and the price was cheap. Optical-fiber gyro was suit to build SINS. By the way, zero bias of optical-fiber gyro was sensitive to temperature, and the compensation technique was a hot point in INS research. According to the above situation, based on one type optical-fiber gyro, the influence mechanism about temperature to optical-fiber gyro zero bias was studied, and a test method was designed, the experiment results was analyzed, finally based on multinomial simulation a compensation math model was established, and the research result discovered that temperature was a big influence to optical-fiber gyro zero bias, and it can be fixed by a compensation math model based on multinomial simulation.
Accounting for individual-specific variation in habitat-selection studies
Popular frameworks for studying habitat selection include resource‐selection functions (RSFs) and step‐selection functions (SSFs), estimated using logistic and conditional logistic regression, respectively. Both frameworks compare environmental covariates associated with locations animals visit with environmental covariates at a set of locations assumed available to the animals. Conceptually, slopes that vary by individual, that is, random coefficient models, could be used to accommodate inter‐individual heterogeneity with either approach. While fitting such models for RSFs is possible with standard software for generalized linear mixed‐effects models (GLMMs), straightforward and efficient one‐step procedures for fitting SSFs with random coefficients are currently lacking. To close this gap, we take advantage of the fact that the conditional logistic regression model (i.e. the SSF) is likelihood‐equivalent to a Poisson model with stratum‐specific fixed intercepts. By interpreting the intercepts as a random effect with a large (fixed) variance, inference for random‐slope models becomes feasible with standard Bayesian techniques, or with frequentist methods that allow one to fix the variance of a random effect. We compare this approach to other commonly applied alternatives, including models without random slopes and mixed conditional regression models fit using a two‐step algorithm. Using data from mountain goats (Oreamnos americanus) and Eurasian otters (Lutra lutra), we illustrate that our models lead to valid and feasible inference. In addition, we conduct a simulation study to compare different estimation approaches for SSFs and to demonstrate the importance of including individual‐specific slopes when estimating individual‐ and population‐level habitat‐selection parameters. By providing coded examples using integrated nested Laplace approximations (INLA) and Template Model Builder (TMB) for Bayesian and frequentist analysis via the R packages R‐INLA and glmmTMB, we hope to make efficient estimation of RSFs and SSFs with random effects accessible to anyone in the field. SSFs with individual‐specific coefficients are particularly attractive since they can provide insights into movement and habitat‐selection processes at fine‐spatial and temporal scales, but these models had previously been very challenging to fit. The authors provide a coherent framework for fitting resource‐selection functions (RSFs) and step‐selection functions (SSFs) with random effects. To allow fitting of SSFs, the authors reformulate the conditional logistic regression model as a (likelihood‐equivalent) Poisson model, where stratum‐specific intercepts are included as a random effect with a fixed large prior variance.
On aggregation invariance of multinomial processing tree models
Multinomial processing tree (MPT) models are prominent and frequently used tools to model and measure cognitive processes underlying responses in many experimental paradigms. Although MPT models typically refer to cognitive processes within single individuals, they have often been applied to group data aggregated across individuals. We investigate the conditions under which MPT analyses of aggregate data make sense. After introducing the notions of structural and empirical aggregation invariance of MPT models, we show that any MPT model that holds at the level of single individuals must also hold at the aggregate level when it is both structurally and empirically aggregation invariant. Moreover, group-level parameters of aggregation-invariant MPT models are equivalent to the expected values (i.e., means) of the corresponding individual parameters. To investigate the robustness of MPT results for aggregate data when one or both invariance conditions are violated, we additionally performed a series of simulation studies, systematically manipulating (1) the sample sizes in different trees of the model, (2) model parameterization, (3) means and variances of crucial model parameters, and (4) their correlations with other parameters of the respective MPT model. Overall, our results show that MPT parameter estimates based on aggregate data are trustworthy under rather general conditions, provided that a few preconditions are met.
Pseudo-document simulation for comparing LDA, GSDMM and GPM topic models on short and sparse text using Twitter data
Topic models are a useful and popular method to find latent topics of documents. However, the short and sparse texts in social media micro-blogs such as Twitter are challenging for the most commonly used Latent Dirichlet Allocation (LDA) topic model. We compare the performance of the standard LDA topic model with the Gibbs Sampler Dirichlet Multinomial Model (GSDMM) and the Gamma Poisson Mixture Model (GPM), which are specifically designed for sparse data. To compare the performance of the three models, we propose the simulation of pseudo-documents as a novel evaluation method. In a case study with short and sparse text, the models are evaluated on tweets filtered by keywords relating to the Covid-19 pandemic. We find that standard coherence scores that are often used for the evaluation of topic models perform poorly as an evaluation metric. The results of our simulation-based approach suggest that the GSDMM and GPM topic models may generate better topics than the standard LDA model.
Multinomial analysis of behavior: statistical methods
Behavioral ecologists frequently use observational methods, such as instantaneous scan sampling, to record the behavior of animals at discrete moments in time. We develop and apply multilevel, multinomial logistic regression models for analyzing such data. These statistical methods correspond to the multinomial character of the response variable while also accounting for the repeated observations of individuals that characterize behavioral datasets. Correlated random effects potentially reveal individual-level trade-offs across behaviors, allowing for models that reveal the extent to which individuals who regularly engage in one behavior also exhibit relatively more or less of another behavior. Using an example dataset, we demonstrate the estimation of these models using Hamiltonian Monte Carlo algorithms, as implemented in the RStan package in the R statistical environment. The supplemental files include a coding script and data that demonstrate auxiliary functions to prepare the data, estimate the models, summarize the posterior samples, and generate figures that display model predictions. We discuss possible extensions to our approach, including models with random slopes to allow individual-level behavioral strategies to vary over time and the need for models that account for temporal autocorrelation. These models can potentially be applied to a broad class of statistical analyses by behavioral ecologists, focusing on other polytomous response variables, such as behavior, habitat choice, or emotional states.
Intelligent Fault Diagnosis Framework for Modular Multilevel Converters in HVDC Transmission
Open circuit failure mode in insulated-gate bipolar transistors (IGBT) is one of the most common faults in modular multilevel converters (MMCs). Several techniques for MMC fault diagnosis based on threshold parameters have been proposed, but very few studies have considered artificial intelligence (AI) techniques. Using thresholds has the difficulty of selecting suitable threshold values for different operating conditions. In addition, very little attention has been paid to the importance of developing fast and accurate techniques for the real-life application of open-circuit failures of IGBT fault diagnosis. To achieve high classification accuracy and reduced computation time, a fault diagnosis framework with a combination of the AC-side three-phase current, and the upper and lower bridges’ currents of the MMCs to automatically classify health conditions of MMCs is proposed. In this framework, the principal component analysis (PCA) is used for feature extraction. Then, two classification algorithms—multiclass support vector machine (SVM) based on error-correcting output codes (ECOC) and multinomial logistic regression (MLR)—are used for classification. The effectiveness of the proposed framework is validated by a two-terminal simulation model of the MMC-high-voltage direct current (HVDC) transmission power system using PSCAD/EMTDC software. The simulation results demonstrate that the proposed framework is highly effective in diagnosing the health conditions of MMCs compared to recently published results.
Generalized site occupancy models allowing for false positive and false negative errors
Site occupancy models have been developed that allow for imperfect species detection or \"false negative\" observations. Such models have become widely adopted in surveys of many taxa. The most fundamental assumption underlying these models is that \"false positive\" errors are not possible. That is, one cannot detect a species where it does not occur. However, such errors are possible in many sampling situations for a number of reasons, and even low false positive error rates can induce extreme bias in estimates of site occupancy when they are not accounted for. In this paper, we develop a model for site occupancy that allows for both false negative and false positive error rates. This model can be represented as a two-component finite mixture model and can be easily fitted using freely available software. We provide an analysis of avian survey data using the proposed model and present results of a brief simulation study evaluating the performance of the maximum-likelihood estimator and the naive estimator in the presence of false positive errors.
Heterogeneous Reciprocal Graphical Models
We develop novel hierarchical reciprocal graphical models to infer gene networks from heterogeneous data. In the case of data that can be naturally divided into known groups, we propose to connect graphs by introducing a hierarchical prior across group-specific graphs, including a correlation on edge strengths across graphs. Thresholding priors are applied to induce sparsity of the estimated networks. In the case of unknown groups, we cluster subjects into subpopulations and jointly estimate cluster-specific gene networks, again using similar hierarchical priors across clusters. We illustrate the proposed approach by simulation studies and three applications with multiplatform genomic data for multiple cancers.
An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data
Background The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. Results In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. Conclusions Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature.